
THEORETICAL CHARACTERIZATION OF THE STRUCTURAL, 

ELECTRONIC AND MECHANICAL PROPERTIES OF SUPERCONDUCTING  

GdBa2Cu3O7-x 

 

AGORA OMARI JARED  

MSc. PHYSICS, BED SCIENCE (KENYATTA UNIVERSITY) 

 

 

A THESIS SUBMITTED TO THE BOARD OF POST-GRADUTE STUDIES IN 

PARTIAL FULFILLMENT OF THE REQUIREMENT OF THE AWARD OF THE 

DEGREE OF DOCTOR OF PHILOSOPHY IN PHYSICS IN THE SCHOOL OF 

PURE AND APPLIED SCIENCES, DEPARTMENT OF PHYSICS OF  KISII 

UNIVERSITY 

 

 

 2023



 ii   

   

DECLARATION BY THE CANDIDATE 

 This thesis is my original work and has not been presented for a degree in any 

other   university. 

  Jared Omari Agora Signature ………………..       Date ………………………. 

RECOMMENDATION BY THE SUPERVISORS 

            This thesis has been submitted for examination with our approval as University 

Supervisors. 

  Dr. Philip Otieno Nyawere                  Signature ………………..  Date …………… 

 Senior Lecturer Kabarak University 

Department of Physical and Biological Sciences 

 Kabarak University 

   Dr.Calford Otieno                               Signature ………………..  Date ……………. 

  Lecturer 

   Department of Physics 

   Kisii University 

Dr. George Simiyu Manyali                 Signature ………………. Date ……………. 

 Senior Lecturer 

 Department of Physical Sciences 

 Kaimosi Friends University  

  



 iii   

   

 

 



 iv   

   

DECLARATION OF NUMBER OF WORDS FOR THE THESES 

 

I confirm that the word length of:  

 

1) The thesis, including footnotes, is  38,842  2) the bibliography is  8,759 

 

and, if applicable,     3) the appendices are  2,942 

 

I also declare the electronic version is identical to the final, hard bound copy of the thesis and 

corresponds with those on which the examiners based their recommendation for the award of the 

degree. 

 

Jared Omari Agora Signature ………………..       Date ………………….. 

I confirm that the thesis submitted by the above-named candidate complies with the relevant word 

length specified in the School of Postgraduate and Commission of University Education regulations 

for the Masters and PhD Degrees. 

 

Dr. Philip Otieno Nyawere                 Signature ………………..  Date …………… 

Senior Lecturer Kabarak University 

Department of Physical and Biological Sciences 

Kabarak University 

Dr.Calford Otieno                              Signature ………………..  Date ……………. 

Lecturer 

Department of Physics 

Kisii University 

Dr. George Simiyu Manyali                Signature ………………. Date ……………. 

Senior Lecturer 

Department of Physical Sciences 

Kaimosi Friends University  

 

 



 v   

   

COPY RIGHT 

All rights are reserved. No part of this thesis may be reproduced, stored in retrieval system 

or transmitted in any form or by means of electronic, mechanical, photocopying or 

otherwise without prior written permission of the author or Kisii University on that behalf. 

©2023, Jared Omari Agora  

  



 vi   

   

DEDICATION 

To my dear wife Harriet,my son Brandon and my daughter Brandy.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 vii   

   

ACKNOWLEGEMENT 

I wish to express my sincere acknowledgement the following persons for the support 

during this work: my supervisors and technical advisor Dr. Philip Nyawere, Dr. George 

Manyali and Dr. Calford Otieno, they offered to use their vast experience in this area of 

study to guide and properly advise in all steps in this work; my fellow post graduate 

students at Kisii University and other Universities with whose we shared different levels of 

difficult in the research process; The Centre for high performance computing (CHPC) 

which offered the cluster resources that we used for the computing process; members to 

physics department and the entire faculty of Kisii University for their most criticism which 

made serious improvement of the work and the organizers of various workshop for their 

consideration to have different section of this work presented which indeed led to 

betterment and improvement. 

 

  

https://www.chpc.ac.za/
https://www.chpc.ac.za/
https://www.chpc.ac.za/
https://www.chpc.ac.za/
https://www.chpc.ac.za/
https://www.chpc.ac.za/


 viii   

   

ABSTRACT 

The aim of the study was to characteris the GdBa2Cu3O7-x perovskite superconductor with 

the view knowing the associated properties under different conditions of pressure. The 

study applied the computational methods to investigate the structural, electronic and 

mechanical, properties of the GdBa2Cu3O7-x perovskite superconductor and determined 

how its properties affect the mechanism of superconductivity. With the local  the 

generalized gradient approximation in the frame work of density functional theory using 

the Quantum espresso code, the ground state properties and equation of state were obtained 

using the Plane waves. The phenomenon of phase transition studied through pressure 

induction. The effect of pressure on the band structure, density of states and the partial 

density of state were also assessed. The orbitals that are responsible for metallization and 

superconductivity were also computed at varied pressure. The effect holes doping with 

pressure was also simulated. The BCS theory and the Mc Millan’s equation were used to 

calculate its superconducting transition temperature at different pressure. Doping with 

variation of oxygen concentration was done. The phase transition was found to occur at 

21.9 GPa. It was found that pressure results to narrowing of the band gap for this material 

and eventually the material undergoes metallization. The orbital that become predominant 

at the high superconductivity transition temperature below the pressure of phase transition 

were; Cu 1d and O 2p from the CuO in the valence band near the Fermi level and the Gd 

5p near the Fermi level. The stability criterion was satisfied from the calculated elastic 

constants. Calculated elastic properties were used to calculate Debye temperature and the 

maximum value was achived at ~20GP. The underdoped regime, where the holes were 

smaller compared to the ones at optimum doping, was determined to be below 20 GPa of 

doping pressure. Optimal doping pressure where was achieved at ~ 20 GPa.. There was a 

drop in T_C above the pressure of around ~20 GPa, which was considered the overdoping 

regime. The highest calculated 𝑇𝐶  (max) was ~141.16 K at ~20GPa. With oxygen doping 

the 𝑇𝐶 (max) was found to be 137.9 K when the value of x was 0.65. the finding of the 

study can be used to in material design for applications 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background to the Study 

The yttrium barium copper oxide (YBCO:123), a ceramic superconductor, was the first 

perovskite to exhibit the highest superconducting state with a critical temperature (TC) of 92K 

(Ramli et al., 2016). This is a major achievement because liquid nitrogen, which has a 

temperature below that could be used as a coolant in applications (Hao et al., 2015). This 

intensified research and studies to search for high TC superconducting materials with great 

interest in various applications (Park, 2015). Intensive research has been conducted on double 

perovskites materials because of their extraordinary magnetic and transport properties 

(Mnefgui et al., 2013; Nabi et al., 2019). Analysis shows that the deformation of YBCO 

ceramics affects their mechanical properties (Bobrov, 1993; Ozturk et al., 2019).  Mechanical 

properties are an important consideration in determining the essentials of material design and 

operating conditions (Alknes et al., 2016; Sugano-Segura et al., 2017). Experimental analysis 

using X-ray diffraction where rare-earth metals replace the yttrium atoms in the YBCO:123 

has also been done (Bondarenko et al., 2017; Kim et al., 2020). The observed behavior of the 

side layers and the mobile oxygen was nearly the same by structural appearance. The crystal 

structures of these oxides are layered, comprising consecutive layers along the longest side of 

their orthorhombic crystal structure. The transformation of the cubic perovskites to the layered 

structure makes the oxygen bonding relatively weak in the layers and provides disorder-free 

channels for ion mobility (Xinxin Zhang, 2016). These results in doping which can transform 
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the crystal to different phases with renewed properties and TC (Nakamura et al., 2017; 

Shimojima et al., 2017). The influence of doping can also affect oxygen diffusivity and can 

result in the development of a new class of material with improved properties (Baiutti et al., 

2015; Kushima & Yildiz, 2010). 

Superconducting technology is one of the exciting areas of modern research and technological 

applications (Brittles et al., 2015; Robinson et al., 2020; Vinet & Zhedanov, 2011). This is 

based on the wide range of applications and high efficiency which is associated with the 

structural, electronic, mechanical, optical, thermoelectric, and magnetic properties of the 

superconductors (Nabi et al., 2019; J. Wang et al., 2019). There is an increasing desire to use 

superconducting electricity in many areas such as the electromotive and aircraft industries as a 

way of achieving cheap and clean environmentally friendly energy (Robinson et al., 2020; X. 

Sun et al., 2019; J. Wang et al., 2019). Superconductivity is one of the ways to assist achieve 

such desire and therefore there is a great need to understand the best way to utilize 

superconductors for a better outcome.  Since the discovery of superconductors in the year 

1911 (Delft, 2012) there have been intense efforts to understand the mechanism that leads to 

superconductivity (Allender & Bardeen, 1973; Dewar, 1987; Lozovik & Yudson, 1976; 

Takada, 1978) and how to achieve better conditions for superconducting properties. The 

discovery of high-temperature superconductors has been one of the greatest achievements in 

the field and has made it possible for superconductors to be practically used in various 

technological applications (Bray, 2009; Durrell et al., 2018; Hull, 2003; Hull & Murakami, 

2004). Among the problems that the practical superconductor has solved is the over-

dependency on fossil fuel and other non-renewable energy which is an environmental threat. 
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In this connection, an effort has been directed toward cheaper and clean energy. Wind power 

with superconducting wires, which is considered one of the technologies to deliver the 

renewable energy and turbines wound on superconducting wires instead of the regular copper 

generator (Y. Lee, 1991; Qu et al., 2013; Rahim & Mohammad, 1994; Sarkar & 

Bhattacharyya, 2012) are some of the modern technologies that make use of superconductors. 

This is because they are much more efficient and are light weighted and compact than the 

non-superconducting technology (Barnes et al., 2005; Jensen et al., 2012; Radebaugh, 2012; 

Sanz et al., 2014). To this, there are several types of High Temperature Superconductor (HTS) 

rotating machines: those using some bulk superconductor, those using superconductor wires, 

and those using both. 

High-temperature Superconductors are classified depending on the ease at which the magnetic 

field is expelled out of a material as it achieves a superconductivity state and also the 

elemental composition of the superconductor. The former leads to first-generation 

superconductors and the latter leads to second-generation superconductors.  

The second-generation HTS in which GdBa2Cu3O7-x belongs is the most preferred over the 

first-generation HTS. For industrial and other applications, the second generation HTS wires 

are strong given their high irreversibility stress limit (Mohan & Gopi, 2020; Shin & Bautista, 

2019, 2018). The current carrying capacity of the second generation wires is mainly associated 

with electrical current density which depends on the prevailing magnetic field and temperature 

(Wang et al 2009). This is important in consideration of the high stresses that are often 

encountered in applications such as high field insert coils and high-speed rotating machines. 

An example of an HTS application is the turbines wound on superconducting wires instead of 
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the normal copper which leads to much higher efficiency, enabling the achievement of the 

lightweight and compact generator than the other known technology (Abrahamsen et al., 

2012; Jia et al., 2016; Qu et al., 2013). Several types of HTS can be applied in rotating 

machines classified as those using bulk superconductosr, those using superconductor wires, 

and those that use both (Vélez et al., 2009).  

The second-generation superconductor’s classification comprises some pure metals, alloys, 

cuprate, and ceramics. The most preferred under this classification are ceramic and cuprate 

superconductors. Ceramics have the advantage of their superconducting critical temperature 

coinciding with that of liquid nitrogen and thus liquid nitrogen can be used as a coolant. The 

only disadvantage of this superconductor is their brittle nature which makes it difficult for 

them to be drawn into wires (Atul, 2018; Congreve et al., 2019; Rizi, 2019). 

The cuprate superconductors are layered superconductors comprising copper oxide (CuO2) 

(Le et al., 2009; H. H. Otto, 2016). These copper oxide layers are weakly coupled and 

determine the superconductivity of the material. The stable form of these materials is achieved 

by the presence of either rare earth metals or another suitable atom in the neighborhood of 

CuO2 layers. Superconducting properties are determined by the extent of doping of electrons 

or holes in the layer (Dellea et al., 2017; Hirsch & Marsiglio, 2019; Wen et al., 2016). Cuprate 

perovskites have two layers between the copper oxide layers. For these types of 

superconductors, the hoping oxygen between the two layers enhances the superconducting 

properties. This means variation of oxygen concentration in these groups of materials greatly 

influences superconductivity. However, a certain reduction in oxygen concentration; below 

the optimal level, can lead to loss of superconductivity under the conditions that support 
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superconductivity. The reduction is achieved by the use of a supercell crystal instate of a 

single cell crystal. A supercell is indicated in Appendix II. 

The study of perovskite cuprate oxides has gained tremendous growth due to their unique 

characteristics (Mohammed et al., 2021; Singh et al., 2014; Varignon et al., 2017). These 

characteristics include; structural phase transition under certain conditions of temperature and 

pressure, semiconductor to metal transition, and superconductivity. The ability to manipulate 

the structure of these perovskites makes it possible to alter the electronic, structural, elastic, 

optical, and thermoelectric properties among others. The changes affect the bandwidth, atomic 

bonding, bond angles, bond length, atomic orientation, and porosity of the material, which 

then influence the associated properties. Therefore, it is of great interest to understand the 

structural, electronic, and mechanical properties of these perovskites. 

In practice, cuprate superconductor applications may demand that the material be drawn into 

wires or tapes. Also, during the application, the material may be subjected to mechanical 

stress hence there is a need to understand the elastic properties of the material. The elastic 

properties give fine details on how the material’s strain and stress correlate under specific 

conditions. Some of the effects of mechanical properties on the superconductor include the 

effect on the critical current density, trapped magnetic field (BT), and superconductivity 

transition temperature. One area of interest in applying these properties is the assessment of 

the capability of superconducting wires for a high field magnetism. It requires the 

determination of the current density and mechanical properties to handle the stress 

encountered during fabrication (Hernandez et al, 2013). This includes the thermal stress as a 

result of cooling down as well as any thermal changes that may result during a fault or quench 
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situation (W. K. Chan et al., 2013; Poole et al., 2016; Senatore et al., n.d. Amin et al., 2009; 

Chiew et al., 2014).  

It has been indicated that the study of crystalline materials under high pressure gives 

important information about properties in material science (C. Li et al., 2016; Mao et al., 

2018; Shen & Mao, 2017). The properties may include conductivity behavior, better 

superconducting critical transition temperature, superconducting critical current density, and 

superconducting critical magnetic field. High pressure, just like high temperature can lead to 

phase transition as a result of reduced interatomic spacing which affects the crystal structure 

and electronic orbitals (Benmakhlouf et al., 2017; Inaguma et al., 2018; Zhao et al., 2017). 

Also inducing pressure can result in totally new material with different characteristics from 

the initial material (Hohenwarter, 2015; Machon et al., 2018). 

The superconducting GdBa2Cu3O7-x has been studied under different conditions to assess the 

best conditions for application (Antonova et al., 2019; Cayado et al., 2017; Kargar et al., 

2015; Mohan & Gopi, 2020; Yoon et al., 2016). The effect of pressure on the material has 

been found to influence many properties that are associated with the material (Drozdov et al., 

2015, 2019; Núñez-Regueiro et al., 2013; J. Zhu et al., 2013). Elevated pressure above the 

atmospheric pressure is known to influence the ultrasonic velocities in a crystal lattice. This is 

a result of the decrease in atomic porosity which reduces the interatomic spacing thus 

increasing the vibrational modes in the crystal lattice. The variation of the ultrasonic wave; 

both longitudinal and transverse is a result of the effect of the hydrostatic pressure imposed on 

the density, porosity, and oxygen concentration of the material. The accurate information 

obtained from such measurement is of great importance because it provides information about 
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the vibrational modes and inharmonicity in the crystal lattice of this superconductor which 

leads to phenomena such as mode softening at the superconducting transition temperature or 

modulus hardening at the temperature below the superconducting transition temperature (Peng 

et al., 2020). Changes in the ultrasonic sound velocities also affect the magnitude of the 

Debye temperature which is a thermodynamic quantity that relates the elastic properties and 

the internal temperature of a crystal (Haussühl et al., 2020; Ledbetter et al., 1975). The 

relationship brings about the temperature dependence of the ultrasonic sound velocity. The 

velocities are likely to increase as the crystal achieves low temperature. These changes 

associated with oxygen concentration can be attributed to the variation of oxygen in the CuO2 

chain along the 𝑏 axis of the crystallographic plane of cuprate superconductors. The properties 

within the crystal that results in changing from superconducting to the non-superconducting 

state of the material are of great interest in trying to understand the superconducting 

mechanism. Also, the effect of pressure on crystalline materials has been used to predict new 

structures and their corresponding properties (Akhmatskaya & Nobes, 1999).  

It has been reported that the oxygen concentration in the GdBa2Cu3O7-x greatly affects the 

properties of the material (Jin et al., 2015; Ogunjimi et al., 2020; Stoyanova-Ivanova et al., 

2015). For small values of 𝑥 the material assumes stable orthorhombic structure. This happens 

for 𝑥 < 0.5 and this small oxygen deficiency leads to an increase in superconducting 

transition temperature. The value of x is varied by the variation of oxygen atoms in the 

supercell crystal. When 𝑥 > 0.5 the material undergoes a polymorphic phase transition to a 

non-superconducting tetragonal phase. At this range of oxygen concentration, the material 

loses the superconducting properties and attains new properties.  
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The composition of the oxygen planes and the layers comprising the charges makes it possible 

for doping to occur in the cuprate superconductors (Been et al., 2021; Emin, 2017). The 

concentration of the hole is varied in two ways; hole doping (p) or electron doping (n) in the 

charge concentration zones. Most cuprates will behave like Mott insulators when doping has 

not been induced in the planes (Cai et al., 2016; Cao et al., 2016; Yin et al., 2019). This is 

attributed to the large amount of energy that is likely to be involved in the movement of the 

holes in the same occupational site. However, upon doping, the cuprates assume metallic 

characteristics based on the shifting of the Fermi level and the Fermi energy, and as a result 

superconductivity and other properties associated with the material are likely to appear or 

disappear depending on the degree of doping (Furness et al., 2018; Greene et al., 2020). 

Figure 1.1 shows how the degree of doping influences the variation of different properties in a 

typical cuprate superconductor. 
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Figure 1.1: A phase diagram of a doped cuprate superconductor representing how 

temperature varies with the degree of doping.  

From Figure 1.1 above, the material portrays different properties depending on the degree of 

doping. The antiferromagnetic phase occurs in the region before superconductivity and in the 

overlap region, the two exist. The pseudo gap exists above the superconductivity transition 

temperature. Above the superconductivity transition temperature, there is over doping leading 

to a decrease in the superconductivity transition temperature (Tallon, 2005).  

It can be inferred that the introduction of the pseudo gap in relationship with the 

superconducting behavior of the superconductors coupled with the antiferromagnetic Mott 

insulators, cooper pairing, and the non-Fermi liquid are vital concepts in the understanding of 

the cuprate superconductors (Hashimoto et al., 2008; Sakai et al., 2010). The principle 

mechanism that leads to the variation of the properties due to doping can be associated with 

the magnetic ordering in the hole-doped CuO2 planes in the perovskite cuprates (Albaalbaky 

et al., 2018; Razia et al., 2009).  

The magnitude of the superconductivity transition temperature is determined by the extent of 

the antiparallel ordering of the magnetic states within the crystal which brings about the 

magnetically influenced superconducting states with the coupling of holes as cooper pairs. 

When the temperature rises above the 𝐓𝐜 the organization of the pair state along the phase is 

lost, with the retention of the pair condensates, which leads to the transition to the pseudo gap 

in which state, the charge and magnetic ordering occur. The magnitude of the hole 

concentration in the Cu-planes is the chief determinant of whether the crystal will be under 

doped, optimally doped, or create an anomaly (Markiewicz, 1994) within the crystal which 
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will lower the superconductivity transition temperature or at worse make the crystal be a non-

superconductor.  

It has been shown that the charge density and spin order are critical in the ordering mechanism 

(Y. Wang & Chubukov, 2014, 2015), and thus for a proper understanding of the influence of 

doping in the ordering process, the knowledge of the spin, charge, and atomic orbitals are very 

important.  

The orientation of the magnetic moment of the under-doped, optimally doped is a factor of the 

spin that determines the orientation of the magnetic moment along the CuO2 plane on the 

copper hole. In most situations, the doped hole is free to move around the oxygen atoms. At 

optimal doping, there is strong magnetic ordering which gives rise to the maximum 

superconducting transition temperature. The pseudo gap region is usually characterized by the 

antiparallel magnetic ordering for the cuprate superconductors. The periodicity of the order in 

the supercell crystal setting is always static and thus does not support the superconductivity of 

the crystal and this can be explained by the fact that the orientation of the CuO bonding is 

directed to the basal direction of the supercell crystal (Barham & Doetschman, 1992; Nithya 

& Thiyagaraj, 2020). This behavior implies that the underlying spins in the layers are strongly 

captured by the antimagnetic ordering. This means that the superconducting states can only be 

realized by the magnetic ordering of the states.  

Some of the properties highlighted above can be explored using the computational modeling 

of materials technique which has been proved to offer the best way to characterize a material 

from the first principle. There are so many codes that have been developed to undertake 

computational calculations in solid-state physics and condensed matter physics.  
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1.2 Statement of the Research Problem  

Research on perovskite materials has led to the discovery of many interesting properties which 

play a key role in technological application (Assirey, 2019; Fukuhara et al., 2010; Ghouch et 

al., 2020; Mumtaz et al., 2020). Generally, many perovskites are implemented in the devices 

we use today. However, many materials which display potentially useful properties have not 

been fully exploited due to a lack of understanding of their mechanical, electronic, and optical 

properties and how those properties can be improved to favor diverse applications. It's usual 

practise to support experimental research with computer studies in order to identify the ideal 

material of target for a certain application and determine the ideal application conditions. 

Among the perovskites of interest are the superconductors such as GdBa2Cu3O7-x. The 

perovskite is a superconductor that is desired for both industrial and practical applications. 

The material can be drawn into long wires with high critical current (Jc) at 77K; it has high 

magnetic fields (HC) of 4.2 T; it has the potential to trap magnetic fields up to 2.0 T at 77K 

and also has low crystalline anisotropy (Leonard et al., 2014; W. L. Zhou et al., 1994). Elastic 

properties of the material indicate that it has strong mechanical properties, meaning it can 

withstand both axial, tensile and compressive strain without getting mechanically damaged 

(Haberkorn et al., 2015; Troitskii et al., 2020). However, despite the interesting properties of 

the material, there is a limitation of the maximum trapped field as a result of the elastic 

properties of the bulk superconductor. This is as a result of the high magnitude of 

electromagnetic force that acts on the bulk crystal when subjected to a large trapped field.  

The response of the material in terms of mechanical properties to the crystal defects such as 

cracks and pores is notably high (Antonova et al., 2019; Tran et al., 2013). This can be 
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attributed to the volume changes that are associated with the polymorphic phase transition 

from the orthorhombic phase to the tetragonal phase. It is, therefore, important that the 

material be investigated under different conditions to establish the best conditions for practical 

application with minimal limitations. The motivation for this study is to explore the effect of 

hole doping resulting from different effects such as pressure in improving the electronic, 

structure, superconductivity, and elastic properties of the material. Also, the pressure-induced 

phase transition will be dealt with.  

Although it is very possible to study the properties of a bulk superconducting material 

experimentally, there is a great challenge to accurately investigate the microscopic properties 

at very low temperatures. Like GdBa2Cu3O7-x, most of the high-temperature superconductors 

are ceramic materials that are characterized by brittle nature. These ceramic materials have 

many defects and therefore it becomes very difficult to separate the intrinsic and the extrinsic 

effects on the material experimentally. In solid state physics, bulk properties are important 

components in determining how the computational results are related to the experimental 

results. The properties are associated with the lattice constants which form the basic 

requirement in the computational studies and also determine the experimental values.  

1.3 Objectives 

1.3.1 Main Objective 

To apply computational methods using ab initio calculations using the quantum espresso code 

to investigate the structural, electronic, and mechanical properties of GdBa2Cu3O7-x and 
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determine how these properties affect the superconductivity transition temperature of 

GdBa2Cu3O7-x. 

1.3.2 Specific Objectives 

i To investigate the structural and electronic properties of the GdBa2Cu3O7-x perovskite 

superconductor doped phases. 

ii To investigate the mechanical properties in relation to stress for GdBa2Cu3O7-x under 

different pressure conditions. 

iii To determine how the mechanical and electronic properties affect the 

superconductivity transition temperature for GdBa2Cu3O7-x. 

1.4 Justification for the Study 

Many studies, both theoretical and experimental, have focused on the mechanical and 

electrical characteristics of perovskite material. Afifi et al., 2019; Ru et al., 2018; N. Zhang, 

2020) have conducted studies to investigate the influence of structural and elastic features on 

the superconducting process in ReBaCuO1. Despite extensive research in the last four 

decades, there still exists inconsistencies among several outhors in there  studies. Therefore, 

there is a need for further investigations to be done to resolve such inconstancies and to 

discover new properties for various applications. High magnetic fields and a high critical 

current density (Jc) are characteristics of ReBa2Cu3O7-x (Re123) high criticaltemperature Tc 

superconductors. As is well known, two crucial prerequisites for applications in engineering 



 14   

   

of Re123 superconducting bulks are high Jc and big bulk size, which is associated with the 

current loop size. 

Comparing GdBa2Cu3O7-x to Y123 superconductors, strong magnetic field results in high Jc. 

Large-scale uses for Gd123 are anticipated to include bulk magnets, magnetic bearings, 

superconducting flywheels for batteries to store energy, separation of magnetic fields, and 

motor current lead. Noteworthy for applications in industry are the critical mechanical 

characteristics of high Tc oxides, as well as the Tc, Jc, and irreversibility fields. Oxide 

superconductors have intrinsic brittleness and fracture toughness of the material is due to the 

defects inside superconductors. Therefore, this study seeks to improve the mechanical 

properties of the material in order to achieve structural reliability for application. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Microscopic Theory of Superconductors 

The theory explains the phenomenon of superconductivity in terms of bound states. The 

bound states comprise the paired electrons which against the principles of electrostatics, they 

attract each other. To explain these, the theory considers paired electrons whose momentum 

must not be the opposite vectors.  Let 𝑃 and − 𝑃 be the initial momenta of the electron pairs 

and 𝑃՛and − 𝑃՛  be the final momenta of the electron pairs. Considering the Debye radius rD 

when the distance of separation of particles in metal is small, the interaction of the electrons is 

based on the Coulomb repulsion between themselves. This is given by the equation; 

             𝑈𝑞 =
4𝜋𝑒2

𝜖(𝑞2+(𝑟𝐷)−2)
                (2.1)   

Where 𝑞 =
𝑃−𝑃՛

ℎ
 and,  P − P՛ is the change in momentum of the electrons while 𝜖 is the 

dielectric constant of the crystal lattice. Equation 2.1 illustrates the effect of the change in 

momentum in the determination of the repulsion potential. 

In addition to the above explanation, the theory also attributes the interaction to be a result of 

electron-phonon interaction(P. B. Allen & Dynes, 1975; Molinari et al., 1992). The quantum 

Hamiltonian of this interaction explains the absorption and emission of the phonons as 

explained in the second-order perturbation theory (Gillet et al., 2017; Golovach et al., 2004). 

In this case, diagonalization of the matrix in the quantum system is made exact and a large 
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number of phonons are enhanced so that exact energy can be obtained in the expected region. 

The theory further explains the emission and absorption of virtual photons. The end process 

results in attractive interaction between the pairs (Fröhlich, 1950). 

The scattering amplitude in the second-born approximation is given by equation 2.2 (Holt et 

al., 1971). 

              𝑉 =
1

2
∑𝑉𝑛𝑖𝑉𝑚𝑖  [

1

𝐸𝑛−𝐸𝑖
+

1

𝐸𝑚−𝐸𝑖
]               (2.2) 

Where 𝑚 and 𝑛 are the initial and final quantum states, 𝐸𝑖 is the ground state energy and the 

summation includes all the other states. We take the initial and final states as a function of 

momentum to be presented by 2𝜀(𝑃՛ ) and 2𝜀(𝑃) respectively. The principle of conservation 

of momentum will only allow the two states. The electron with momentum 𝑃 will emit a 

photon of momentum ђ𝑞 and its momentum changes to 𝑃 − ђ𝑞 = 𝑃՛ and thus the energy of 

the acquired state is given by; 

𝜀(𝑃) + 𝜀(𝑃՛ ) + ђ𝜔𝑞                      (2.3) 

Where 𝜔𝑞 is the phonon frequency with wave vector 𝑞. In the other state, the electron whose 

momentum is −𝑃 will emit a phonon whose momentum is −ђ𝑞 and acquires a momentum 

−𝑃 − ђ𝑞 = 𝑃 and the energy of the state will remain unchanged. Of interest then is the 

scattering amplitude resulting from the phonons. This is expressed by the equation; 

         𝑉𝑃1𝑃1
ʹ =

1

2
|𝑀(𝑞)|2 [

1

𝛿𝜀−ђ𝜔𝑞
+

1

−𝛿𝜀−ђ𝜔𝑞
]                        (2.4) 

  Where 𝛿𝜀 = 𝜀(𝑃՛) − 𝜀(𝑃) is the energy absorbed or emitted.  
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     The scattering amplitude is given by: 

                𝑉𝑃1,𝑃1
ʹ = 𝑈𝑞 + |𝑀(𝑞)|2

ђ𝜔𝑞

(𝛿𝜀)2−(ђ𝜔𝑞)2
              (2.5)      

The equation is very important in the interpretation of the phonon spectra in terms of whether 

the contribution is negative or positive. The contribution is said to be negative if |𝛿𝜀| < ђ𝜔𝑞 

which means that the interaction of the electron pair will be attractive as a result of the 

contribution from the Coulomb interaction being too small. Further, this means that 𝜔𝑞 is 

smaller than the Debye frequency 𝜔𝐷. However, this does not factor in the operation of 

superconductivity at a low temperature so well. The interaction becomes weak as the 

superconducting temperature becomes low. When the interaction is weak the bound states fail 

to exist hence this theory fails to work. Through the work of Cooper 1956 (Pavlidis et al., 

2003), it was suggested that this can work on free particles and not those that are in a state of 

Fermi gas because they exist in the form of Fermi spheres. Free particle is considered to exist 

in a vacuum space, and the density of the state is always small to allow the existence of bound 

states because their energy is small. This is completely different from the Fermi gas at 𝑇 =

0𝐾. 

To illustrate these two particles existing at the Fermi-sphere, we consider their momenta to be 

opposed and represented by,  𝑃1 𝑎𝑛𝑑 − 𝑃2 meaning their total energy must be larger than 2𝜀𝐹 

and they will be in a bound state where (2𝜀𝐹 − 𝐸)  is the binding energy. The boundary 

separating the bound states from the continuous spectrum is 2𝜀𝐹 which is larger than that 

proposed by the mechanical theorem for particles in a vacuum space. 
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Excitation energy for an ideal gas is achieved by the condition that the particle is transferred 

from the Fermi surface to a given state of momentum and is given by equation;  

𝜀(𝑃) =
𝑃2

2𝑚
−

𝑃𝑞
2

2𝑚
≅ 𝑣𝐹(𝑃 − 𝑃𝐹)             (2.6) 

Where m is the mass of the particle, 𝑣𝐹 is the Fermi velocity, 𝑃𝐹 is the Fermi momentum and 

the condition of 𝑃 < 𝑃𝐹 must hold. 

This works on the assumption that the energy is small. When 𝑃 > 𝑃𝐹, the particle is                

transferred from a state with momentum to a Fermi surface and the energy is given by;  

𝜀(𝑃) = (
𝑃𝐸

2

2𝑚
−

𝑃2

2𝑚
) ≅ 𝑉𝐹(𝑃𝐹 − 𝑃)              (2.7) 

Taking the potential of interaction to be small, it will mean that the binding energy will also 

be small such that: 

              𝑈(|𝑟1 − 𝑟2|) = −𝑔𝛿(𝑟1 − 𝑟2)             (2.8) 

Where 𝑟1  and 𝑟1 are the distance of particles 1 and 2 and 𝑔𝛿(𝑟1 − 𝑟2) is the binding energy. 

By considering two bound states, the Schrödinger equation can represent the excitation; 

[𝜀(𝑃1̂) + 𝜀(𝑃2̂) − 𝑔𝛿(𝑟1 − 𝑟2]ѱ(𝑟1, 𝑟2) = (𝐸 − 2𝜀𝐹)ѱ(𝑟1, 𝑟2)       (2.9)    

Where Ѱ is the wave function and E is the ground state energy for the system. 

The assumption in equation 2.9 is that the excitation energy is defined by the Fermi energy. If 

the sum of the momentum will be zero, then the quantum mechanical basis set must be 

invariant (remains unchanged when a specified transformation is applied) with respect to 

change in space which results  to the equation;  
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ѱ(𝑟1, 𝑟2) = (𝑟1 − 𝑟2)                      ( 2.10) 

So this means that the bound states will always form even when the interaction is weak. If the 

formation of pairs happens under the influence of energy, then the unpaired particles will 

never be in the ground state in a quantum mechanical system. To move the paired particles 

into a higher excitation state, then the pairs must be broken. 

2.2 Thermodynamic Properties of a Superconductor 

The thermodynamic properties determine the variation of particles at the energy gap with 

temperature and pressure. At absolute zero temperature the governing equation for the energy 

gap is given by; 

𝑔

2
∫

1

𝜀(𝑃)

𝑑3𝑃

(2𝜋ђ)3
= 1                       ( 2.11) 

Where 𝑔 is the energy gap and  P is pressure.  

If the temperature is zero(𝑇 = 0), then the above equation will only have a solution if the 

integral is over a wide range. As 𝑔0 → 0 the integral diverges near 𝑛𝑝 = 0  which means at 

small 𝑔0 the pressure is approximately equal to Fermi pressure 𝑝 ≈ 𝑃𝐹. Then in terms of 

pressure at the Fermi level, equation 2.11 becomes equation 2.12. 

𝑔𝑃𝐹
2

2𝜋2ђ3ђ𝐹
∫

𝑑𝑛𝑃

√𝑔0
2+𝑛𝑃

2
= 1

ђ𝜔𝐷

0
                      ( 2.12) 

Where  𝑔0 = 2ђ𝜔𝐷exp (
−2

𝑔𝑣𝐹
) 

The density of state at the Fermi surface 𝑣𝐹  is represented by; 
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 𝑣𝐹 =
𝑚𝑃𝐹

𝜋2ђ3
                       ( 2.13) 

2.3 Thermodynamics of Superconductors in Magnetic Fields 

The external magnetic field plays a role in the transformation of material between the normal 

phase and the superconducting phase (Cbers et al., 2005; Karaca et al., 2009; Shapiro & 

Shapiro, 2019). At a relatively higher magnetic field, the material loses superconducting 

properties due to the penetration of the fields into the material. When the material has zero 

magnetic fields 𝐻0, the normal conducting state becomes electrodynamically unstable. This 

only happens below the superconducting transition temperature (𝑇𝑐) which is pressure 

dependent. The pressure at which the thermodynamic potential energy (𝛷) is lower ensures 

the stable state of the material at (𝐻0.  The degree of the low energy for stability is determined 

by the Fermi surface energy by the condition that the superconducting transition temperature 

must be lower than the Fermi surface energy (𝜀𝐹 < 𝑇𝑐) (Lugovskoi et al., 2019; Ruhman & 

Lee, 2016). The thermodynamic potential for the two states is related by the equation;  

           𝛷𝑠(𝑇, 𝑃, 𝐻0) = 𝛷𝑠0(𝑇, 𝑃) + 𝑉𝑠0(𝑇, 𝑃)
𝐻0

2

8𝜋
                      (2.14)  

Where 𝛷𝑠0(𝑇, 𝑃) is the thermodynamic potential at 𝐻0 while  𝑉𝑠0 is the volume of the 

superconductor. At the boundary of transition from the normal state to the superconducting 

state the governing equation of the thermodynamic potential is; 

                                     𝛷𝑠(𝑇, 𝑃, 𝐻0) = 𝛷𝑠𝑜(𝑇, 𝑃) + 𝑉𝑠𝑜(𝑇, 𝑃) +
𝐻𝐶

2(𝑇,𝑃)

8𝜋
                    (2.15) 

Where 𝐻𝐶(𝑇, 𝑃) is the critical transition magnetic field in terms of temperature and pressure 

𝑇𝐶(𝑃). As 𝑇 → 𝑇𝐶  𝑡ℎ𝑒  𝐻𝐶(𝑇𝐶 , 𝑃)=0 and hence the free energy is given by;  
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𝐹𝑛(𝑇, 𝑉) = 𝐹𝑠0(𝑇, 𝑉) + 𝑉
𝐻𝑐

2(𝑇,𝑉)

8𝜋
                      (2.16) 

The equation of the free energy implies that 𝐻𝐶(𝑇𝐶 , 𝑃) characterizes the latent heat and the 

change in volume at the transition boundary. The transition latent heat expressed in terms of 

entropy given by; 

         𝑆𝑠=(−
𝜕𝛷𝑠0

𝜕𝑇
)𝑃 − (

𝜕𝑉𝑠0

𝜕𝑇
)

𝐻0
2

8𝜋
                                        (2.17) 

The volume change under the influence of pressure and the latent heat of transition are given 

by equations; 2.18 and 2.19 respectively. 

         𝑉𝑠 − 𝑉𝑛 =
𝑉𝑠𝐻𝑐

4𝜋
(
𝜕𝐻𝑐

𝜕𝑇
)𝑃                       (2.18) 

          𝑆𝑠 − 𝑆𝑛 =
𝑉𝑠𝐻𝑐

4𝜋
(

𝜕𝐻𝑐

𝜕𝑇
)

𝑃
                                        (2.19) 

2.1 The Ginzburg-Landau Theory 

The theory which was established in 1962 by Ginzburg and Landau gives the characteristic 

quantitative behavior of a superconductor from normal to the superconductivity transition 

phase. According to the theory, the free energy increases is described by a superconductivity 

order parameter (∧) in which the free energy expansion is given by;  

𝐹 = 𝐹𝑛 + 𝑑|∇ ∧|2 + 𝐴|∧|2 +
𝐵

2
|∧|4                   (2.20) 

Where Fn is the free energy for the normal state and the coefficients 𝑑, 𝐴 and 𝐵 are dependent 

on the temperature and pressure of the material in which 𝐴 and 𝐵 must be positive. 
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 For easy computation, a quantity 𝛳 is introduced which must be proportional to the quantity 

∧ such that the gradient (∇) in the above equation is proportional to the quantum mechanical 

kinetic energy. 

                                                                 𝛳 = (
4𝑚

ђ𝑑
)
1

2⁄

∧                           (2.21) 

If the internal energy of the superconducting material is free of any magnetic field (𝐻0), then 

the free energy of the superconductor is given by; 

                                             𝐹 = 𝐹𝑛 + ∫(
ђ2

4𝑚
|∇𝛳|2 + 𝐴|𝛳|2 +

𝑏

2
|𝛳|4)𝑑𝑉                    ( 2.22) 

        Where 𝐹𝑛 is free energy at 𝛳=0,  

Considering a superconductor of equal uniformity, the above equation becomes; 

𝐹 = 𝐹𝑛 + 𝐴|𝛳|2 +
𝐵𝑉

2
|𝛳|4                        (2.23) 

To achieve equilibrium of the order parameter the stable state temperature must have 

minimum energy such that; 

𝜕2𝐹

𝜕𝛳2
= 2𝑎𝛳             (2.24) 

        For a normal state and for superconducting state as; 

𝜀(𝑃) = (
𝑃𝐸

2

2𝑚
−

𝑃2

2𝑚
) ≅ 𝑉𝐹(𝑃𝐹 − 𝑃)                      ( 2.25) 

This works on the condition that ϴ is real when 
𝜕𝐹

𝜕ϴ
= 0, 𝛳 = 0, and 𝛳2 = −

𝑎

𝑏
. Therefore, 

we expand the order parameter near the boundary of the superconducting transition 
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temperature in the integral power of  (𝑇 − 𝑇𝐶) such that; when 𝑎 = 𝛼(𝑇 < 𝑇𝐶) the number of 

a superconducting electrons becomes: 

𝑛𝑠 =
2𝛼

𝑏
(𝑇𝑐 − 𝑇)                       (2.26) 

And the superconducting free energy becomes; 

 𝐹𝑠 = 𝐹𝑛 − 𝑉
𝐴2

2𝐵
=𝐹𝑛 −

𝑉𝛼2

2𝐵
(𝑇𝐶 − 𝑇)                     ( 2.27) 

Thus, the thermodynamic potential energy and the critical magnetic field can be expressed by 

the equations 2.28 and 2.29 respectively. 

  𝛷𝑠 = 𝛷𝑛 − 𝑉
𝛼2

2𝐵
(𝑇𝐶 − 𝑇)2           (2.28) 

     𝐻𝐶 = (
4𝜋𝛼2

𝐵
)

1
2⁄

(𝑇𝐶 − 𝑇)                        (2.29) 

2.5 Mechanical Properties of Materials 

Mechanical properties of a material describe the elastic behavior of a material when subjected 

to external stress. The thermodynamic properties of a material which are associated with the 

mechanical properties are well explained if the elastic constant of a material is considered as a 

function of temperature and pressure. This explains why elastic waves are the most important 

properties that can explain electron coupling and other mechanisms that are related to 

mechanical properties. The mechanical properties determine the various phase transition that 

is possible in a material which includes the superconducting transition temperature and the 

polymorphic transition temperature. The ultrasonic sound wave normally generates 
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mechanical vibrations in material under consideration which can affect materials in all states 

of matter. The wave is a summation of the vibrations from all atoms or molecules in the 

crystalline material. In solid material, we have both longitudinal and transverse waves which 

are never the case in liquid. The properties are very useful in determining the suitability of a 

material for various applications. 

2.6 Elastic Constants and Elastic Moduli 

When the material of a crystalline or amorphous nature is stressed by external forces (stress) 

which is usually represented by 𝜎𝑖𝑗, it undergoes either elastic or plastic deformation. The 

kind of deformation depends on the magnitude of the applied force. As a result, the material 

gets  geometry deformation and this is described by the strain tensor usually represented by 

Hooke’s law which relates the two tensors as given in equation 2.30. 

 𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑗                       (2.30) 

The constant  𝐶𝑖𝑗𝑘𝑙 describes the ability of the material to resist stress and is referred to as the 

elastic constant of a material. The elastic constant is unique for every material and its value 

can be used to deduce all the mechanical properties associated with the material. The internal 

energy of a crystal is also related to the constant and the relationship can be expressed as; 

𝑈 = 𝑉𝑜 + 𝑉 ∑ 𝜎𝑖𝜀𝑖𝑖 +
1

2
𝑉 ∑ ∑ 𝐶𝑖𝑗𝜀𝑖𝜀𝑗𝑗𝑖                (2.31) 

The properties associated with the elastic constant that are of interest to researchers and 

industrial applications are Young’s moduli B, elastic moduli E, Poisson’s ratio 𝜎, and the 

shear moduli G. The elastic constant is a descriptive term used to represent the linear 
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combination of all the elastic consents in a crystal lattice. The use of averages such as the 

Reuss and Voigt ensures a better value for the elastic constants to be used in the calculation of 

the aforementioned properties. 

2.7 The Theoretical Strength of a Perfect Crystal 

The strength of a crystal and its stress resistance entirely depends on the arrangement of the 

particles in the crystal lattice when subjected to any stress conditions and the strength  is 

determined by such factor as the elements that constitute the crystal, the type of bonding that 

bind the elements and the crystallographic structure of the material (Kanel et al., 2004; Panin 

et al., 2015). A material is considered to be in a state of theoretical stress when its stability is 

about a transition from stability to instability. This is represented in terms of uniaxial tensile 

loading 𝜎𝑖𝑢𝑡, hydrostatic tensile loading 𝜎𝑖ℎ𝑡, and pure shear 𝜎𝑖𝑠. Theoretical stress is 

calculated on the assumption that the strain is directly proportional to stress provided the 

maximum limit has not been exceeded. 

2.8 Mechanical Stability 

Mechanical stability can be attributed to the effect of the stress tensor components (Burtch et 

al., 2018; Karlsruhe & Berichte, 2006; Sureshkumar & Beris, 1995).   For a periodic crystal, 

the central force in the crystal acts through all the neighboring particles. For a three-

dimensional structure, the crystal energy is lowered by microscopic deformation resulting 

from the external mechanical loads and internal thermal stress in what is referred to as soft 

phonons. The phonons give a full description of the movement of particles in the crystal 

lattice. Depending on the movement of the particles, the soft phonons can cause dynamic 
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instability which is brought about by the polymorphic phase transition resulting from either 

temperature or pressure changes. 

2.9 Intrinsic Hardness 

Intrinsic hardness depends on the type of bonding existing in a material. The bonding 

determines the magnitude of the elastic moduli and therefore this kind of hardness is 

calculated from the elastic moduli of the material. It is predominant in the covalent bond and 

not metallic and ionic bonding. This is because in the two bonding, there exists impurities and 

grain boundaries which bring about extrinsic factors which make a material not  exhibit the 

intrinsic behavior. Both bulk and shear moduli play a part in determining the hardness of a 

material (Ding et al., 2004). Vicker which is the measure of the intrinsic hardness of a 

material is given by;  

𝐻𝑉 = 𝐶𝐾𝑀𝐺𝑛              (2.32)    

Where 𝐶,𝑀, and 𝑁  are constants and 𝐾 is Pugh’s modulus  (
𝐺

𝐵
 ), and G and B are the shear 

and bulk moduli respectively. This only occurs when the electron-electron pair is shifted from 

the conduction band to the valence band in which case the  activation energy becomes twice 

that of the band gap energy (𝐸𝑔).    This establishes a strong relationship between bond 

strength and 𝐸𝑔 hence the intrinsic hardness is expressed as; 

                          𝐼𝐻(𝐺𝑃𝑎) = 𝐴𝑁𝑒𝐸𝑔 = 350 [(𝑁𝑒)
2

3 exp(−1.191𝑓𝑖)] /2.5𝑑𝑏            (2.33)         

Where A is a constant, 𝑁𝑒 represents the number of the valence electrons per cubic angstrom, 

𝑑𝑏 is the bond length in angstrom and 𝑓𝑖 is the ionicity of the chemical bond. 
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2.10 Intrinsic Brittleness and Ductility     

The mechanical brittleness and ductility of the material give the measure of material to resist 

fracture. Some of the quantities that are used to estimate this measure are Pugh’s ratio and the 

Cauchy pressure. The criterion varies from one material to the other.     

2.11 Materials at High Pressure   

 The study of materials at high pressure has attracted a lot of attention due to intense scientific 

and technological interests such as understanding phase transition under pressure and the 

discovery of superconductors and hard materials. The basic quantity that determines the 

stability of a given phase in a system is Gibb’s free energy which is given by; 

    𝐺 = 𝐸 + 𝑃𝑉 − 𝑇𝑆             (2.34) 

Where 𝐸  is the energy, 𝑃 is the pressure, 𝑇 is the temperature, 𝑉 is the volume and 𝑆 is the 

entropy. For the normal cases of application, 𝑃 and 𝑇 are applied externally and 𝐸, 𝑉, and 𝑆 

are adjustable to attain a minimum value of 𝐺. The implication of the equation (2.34) is that 

upon application of pressure, a structure with a smaller volume will always have a small 𝐺 

even if their energy is of higher magnitude and thus exist in high pressure. When Gibb’s free 

energy becomes the same at two polymorphic phases, a phase transition occurs. If the 

operating conditions are such that 𝑇 = 0, the pressure-induced phase transition is supposed to 

be a function of 𝐸(V ). Apart from the structural changes, materials under pressure also 

undergo electronic changes. As a result, a material may transform from insulator to conductor, 

semiconductor to a conductor, or become a superconductor due to the broadening of the 
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energy bands brought about by the interatomic interactions under pressure. As a result, 

modification of atomic orbitals and the bonding arrangements can occur.  

2.12 Pressure-Induced Superconductivity 

 

Superconductors can be divided into two: conventional superconductors and non-conventional 

superconductors. The mechanism of superconductivity is explained by the Bardeen-Coopers-

Schrieffer (BCS) theory. The theory attributes superconductivity to the pairing initiated by 

phonons and as a result, the pairs behave like a superfluid. Most conventional superconductors 

are a result of high pressure. These non-conventional superconductors are not described by the 

BCS theory. The pressure-induced doping in these superconductors can improve the 𝑇𝐶 and 

thus make them better high-temperature superconductors especially in the cuprate 

superconductor. For insulators and semiconductors, pressure may cause the band gap to close 

and the material to undergo metallization. 

2.13 Historical Background of Superconductivity 

Superconductivity is a phenomenon where the material becomes free of electric fields and 

magnetic field and hence becomes a perfect diamagnetic material below a critical temperature 

(Rosenstein & Li, 2010) and thus achieve zero resistance to electrical conductivity. This 

happens because of the stability of the charge carriers that have zero resistance to electrical 

conductivity. In his discovery of superconductivity in 1911, Heike Kamer-Lingh (Delft & 

Kes, 2010) realized the electrical conductivity of mercury dropped to zero after subjecting the 

material to a temperature of 4.2K. 
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In 1933, Walther Meissner and Robert Schoenfeld discovered the diamagnetic nature of type I 

superconductors. They found that magnetic fields are completely expelled from the interior of 

the superconductor once the superconductor achieves the superconducting state (Hirsch, 2017; 

Manuscript, 2020). The Meissner effect, which is this feature, proved that superconductors are 

not simply ideal conductors since superconductivity needs a vital temperature and vital current 

in addition to magnetic fields. The nature of the expulsion of the magnetic field can be 

considered in terms of type-I superconductors and type-II superconductors. In type-I 

superconductors, the superconductivity vanishes rapidly upon exceeding the critical magnetic 

field (Hc). In type-II superconductors, once the applied field exceeds the Hc1 the material 

attains a vortex state in which further application of the magnetic field does not lead to zero 

electrical resistance provided the flowing current is small in magnitude (Babaev & Speight, 

2005; Qd & Qd, 2003). At the second critical magnetic field Hc2 leads to the destruction of the 

superconductivity. Most of the type-I superconductors are pure elements while the type-II 

comprises mainly of the impure compound superconductors and thus the GdBa2Cu3O7-1 

belongs to this category of materials. 

In 1935 Fritz and Heinz London proposed the London theory which brought forth equations 

that were consistent with the Meissner effect (T he E Lectro m Ag n Etic E q u a Tio n s o f Th 

e S u p Ra c o n d u c to R, 1934). The equations explain how the field of magnetic particles as 

well as surface current rely on the superconductor's distance from its surface when combined 

with Maxwell's equations. These electrodynamics properties depend on two- fluids; the 

normal fluid and the superfluid concentrations whose sum is the total fluid representing the 

total number of electrons in the system such that: 𝑛𝑠 + 𝑛𝑛 = 𝑛 (Barišić et al., 2010). Where 𝑛 
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is the total number of conducting electrons per unit volume. The normal fluid is thought to 

carry the ohmic current and is described by; 

𝑗𝑛 = 𝜎𝑛𝐸             (2.35) 

Where 𝜎𝑛 is defined by Drude’s theory and given as 𝜎𝑛 =
𝑒2𝑛𝑛𝜏

𝑚
. and E is the electric field. On 

the other hand, the superfluid ohmic current for a superfluid is given by; 

  𝑗𝑠 = −𝑒𝑛𝑠𝑉𝑠             (2.36) 

Then the first London equation is obtained from Newton’s law of motion given by the 

equation 2.37 and 2.38 respectively. 

                                                          
𝑑

𝑑𝑡
𝑣𝑠 =

𝐹

𝑚
=

𝑒𝐸

𝑚
            (2.37) 

Thus we get, 

      
 𝜕𝑗𝑠

𝜕𝑡
=

𝑒2𝑛𝑠𝐸

𝑚
            (2.38) 

The assumption of the first London equation is that 𝑛𝑠 and 𝑛𝑛 are constant in terms of time 

and space. The restriction is only solved by the application of the Ginzburg-Landau theory. 

Taking the curl of the first London equation to be given by equation;  

   
𝜕

𝜕𝑡
∇ × 𝑗𝑠 =

𝑒2𝑛𝑠

𝑚
∇ × E = −

𝑒2𝑛𝑠

𝑚𝑐

𝜕𝐵

𝜕𝑡
                     (2.39) 

Which upon integration gives; 

∇ × 𝑗𝑠 = −
𝑒2𝑛𝑠

𝑚𝑐
B + C(r)           (2.40) 
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Where C(r) represents the constant of integration at each point within the superconductor. 

When there is no application of magnetic field in a superconductor, the 𝑗𝑠 = 0 and 𝐵 = 0 

meaning the constant becomes zero. According to the Meisner-Ochsenfeld effect, the material 

can only become a superconductor within some applied magnetic field which cannot apply in 

the case of the London theory based on the fact that the electron density of the superfluid 𝑛𝑠 is 

constant with time as given in equation (2.40). For  equation 2.40 to work, London made an 

assumption letting C(r) be zero as expressed in equation 2.41 such that; 

∇ × 𝑗𝑠 = −
𝑒2𝑛𝑠

𝑚𝑐
𝐵            (2.41) 

In the second London’s law, Ampere’s law is incorporated and led to the equation; 

∇ × 𝐵 =
4𝜋

𝑐
𝑗𝑠 +

4𝜋

𝑐
𝑗𝑛           (2.42) 

If the current does not undergo displacement, then; 

∇ × ∇ × 𝐵 = −
4𝜋𝑒2𝑛𝑠

𝑚𝑐2
𝐵 +

4𝜋

𝑐
𝜎𝑛∇ × 𝐸 = −

4𝜋𝑒2𝑛𝑠

𝑚𝑐2
𝐵 −

4𝜋

𝑐
𝜎𝑛

𝜕𝐵

𝜕𝑡
         (2.43) 

Since the interest is in the stationary state, the last term can be omitted, and we get; 

                                                   −∇(∇. 𝐵) + ∇2𝐵 = −
4𝜋𝑒2𝑛𝑠

𝑚𝑐2 𝐵           (2.44) 

If we take the London penetration depth to be given by the equation; 

𝜆𝐿 = √
𝑚𝑐2

4𝜋𝑒2𝑛𝑠
             (2.45) 

Then, 
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             ∇2𝐵 =
1

𝜆𝐿
2 𝐵        (2.46) 

If we let the penetration depth be presented by 𝑥 and we let 𝑥 > 0, the applied magnetic field 

becomes parallel to the surface and can be presented as; 

      𝐵𝑎𝑝𝑙 = 𝐻𝑎𝑝𝑙 = 𝐵𝑎𝑝𝑙�̂�        (2.47) 

And if 𝑥 ≥ 0 the governing equation becomes; 

           𝐵(𝑥) = 𝐵𝑎𝑝𝑙�̂�𝑒
−𝑥

𝜆𝐿              (2.48) 

The equation implies that there is an exponential decrease in the magnetic field with the 

penetration depth from the surface of a superconductor. For bulk superconducting materials 

𝐵 → 0 as the depth increases as shown in Figure 2.1. 

 

Figure 2.1: The variation of the penetration depth with the magnetic field.  

 

This   London penetration depth indicates an exponential decay of the applied magnetic field 

from the surface of the superconductor to the interior of the superconductor. This behavior is 

associated with the density of the superconducting electrons in the superconductor. The 
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London equation gave an elaborate explanation of the way the superconducting particles 

behave in electronic fluid when subjected to either the dc or ac electromagnetic field. 

However, by 1940 it was discovered that the theory failed to explain one key thing; the 

negative surface energy the theory predicted for a bulk superconductor 𝝈𝒏𝒔
. The implication 

of such assumption was that when the superconductors are subjected to an external magnetic 

field, the external magnetic field could lead to a reduction of the total energy hence leading to 

an interchange between the normal and the superconducting regions within the material. The 

reported experimental results indicated that for such interchange to occur for the normal and 

superconducting regions the material must have a demagnetization factor of greater than zero.  

Also, another contradiction arose from the fact that for thick layers (~1mm) the surface energy 

is greater than one ( 𝝈𝒏𝒔
> 𝟎). 

Ginzburg and Landau created a phenomenological theory in 1950 that was effective in 

explaining the superconductivity's microscopic feature taking into account the quantum theory 

(Mayssara A. Abo Hassanin Supervised, 2014). They assumed there was some wave 

function(Ψ) that gives a full quantum mechanical description of a particle, say an electron. 

With that, amplitude squared of the function is supposed to be proportional to the 

superconducting electron density (𝑛𝑠) and must be equal to zero in the normal region and will 

continue to increase through the normal-superconducting interface and finally have a state of 

superconductivity in the superconducting region. The implication of this is that Ψ can only 

describe the quantum mechanical properties when it takes the value it attains at equilibrium. 

Considering the fact that the density of kinetic energy in quantum mechanics is described by 

|Ψ|2,  then the effect of quantum mechanics results in additional energy that is stored at the 
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interface which leads to the establishment of the surface energy to be greater than zero (𝜎𝑛𝑠
>

0). The Ginzburg-Landau theory considers the full description of the superconductors to be 

based on quantum mechanics. As such, it assumes that the superconducting electrons can be 

fully described by a wave function of the spatial coordinates described by Ψ(𝑟1𝑟2, …… . . 𝑟𝑛). 

This explains the coupling aspect of the superconducting electrons. Since the single electron 

in the superconducting state is described by Ψ(r) and assuming the superconducting electrons 

are described by 𝑛𝑠 and all of them are free of interaction, then a wave function of a single 

electron can be used to give a full description of the whole system. This allowed the use of the 

superconductivity quantum effect while observing the macroscopic characteristics of the 

material.  

Abrikosov applied the Ginzburg–Landau theory and as a result, he came up with a theory of 

type II superconductors which proved that 𝜎𝑛𝑠
> 0 was not a necessary condition for all 

superconductosr (Abrikosov, 1957). According to the theory, the materials that must achieve 

this condition to superconduct are the type I superconductors and indeed it was proved that 

most alloys have 𝜎𝑛𝑠
< 0 and are type II superconductors. The theory further explained that 

superconductivity in type two supeconductors does not depend on the Meissner effect, 

meaning that magnetic fields penetrate into this material through quantized vortex lines which 

can be described as a quantum effect on the macroscopic scale. 

In 1957, Bardeen Coopers and Schrieffer established a microscopic theory of 

superconductivity (Schrieffer, 2018). According to the theory, superconductivity is treated as 

a microscopic effect caused by the condensation of the Cooper pairs which interact within a 

distance of a microscopic scale. For the pairs to form an attractive interaction the electrons 
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must exist at the ground state of a superconducting material. This is made possible by the 

exchange of the virtual phonons which give an attractive energy range around the Fermi level. 

In some cases, the attractive energy may be dominant over the Coulomb repulsion. The related 

states in non-superconductors possess less condensation energy in comparison with the 

superconducting states. The theory also applies the concept of nuclear physics to illustrate 

how nucleons interact in an atomic nucleus quantum theory explaining superconductivity.  

The materials classified as superconductors with high temperatures (HTS) have a 

superconducting temperature of transition (Tc) greater than 30K, or -243oC. Thirty-k was 

considered the maximum theoretical value of T_c from 1960 to 1980. In ceramic lanthanum 

and barium oxide at 35 Kelvin, researchers Karl Muller and Johannes Bednorz of IBM 

developed the first high T_c superconductor in 1986. 2008 saw the discovery of Fe-based 

superconductors, replacing the cuprite compound as the association for a high-temperature 

superconductor till then. HTS are type II superconductor that allows magnetic fields to 

penetrate their interior in quantified units and fields are required to suppress 

superconductivity. 

In the 1959 Gor’kov made more development on the microscopic theory of superconductivity 

by explaining the use of the Green’s function to solve the BCS problem. The method was 

successfully applied in explaining the phenomenological quantum parameters explained in the 

Ginzburg–Landau theory and giving the proper microscopic interpretation. It also gave the 

range in which the theory can be accurately applied without a large margin of error. 

In the year 1964 Ginzburg came up with non–phonon mechanism of superconductivity that 

could be applicable on the low–dimensional (1D and 2D) systems only. According to him, 
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substation of the phonons with excitons can lead to an increase of 𝑇𝐶 to the scale of up to 50-

500K. 

In the year 1984, Brizhik and Davydov designed the soliton (or bisoliton) model of 

superconductivity. The model was capable of explaining the superconductivity in low 

dimensional (quasi-1D) organic conductors. This was a development from the work of 

J´erome et al who discovered organic superconductors in the year 1979. 

Based on the 1979 discovery of superconductivity in heavy fermions, Miyake et al. (1986) 

identified the mechanism of superconductivity as the interchange of antiferromagnetic spin 

fluctuations. Their work showed that the anisotropic even-parity nature of the superconductors 

is not aided by the antiferromagnetic nature of the material while the isotropic even-parity 

nature is done by the spin fluctuation. The same year the history of superconductivity got a 

boost when the first high temperature superconductor was discovered by Bednorz and Muller, 

but unfortunately, the BCS theory was not able to explain most of the properties that were 

associated with the superconductors. 

In the year 1987, Krezin and Wolf came up with a model that explained superconductivity on 

the basis of the superconducting energy gap and the pressure induced energy gap in layered 

superconductors. Even though the experiment that was done shortly after that discovery 

showed that the two gaps existed, still both of them were considered to be of the 

superconducting origin. 

In the year 1988, Davydov attributed the cause of high temperature superconductivity to the 

formation of bisolitons and the condition occurs in organic superconductors only. In the year 
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1990, he came up with a theory of high temperature superconductivity based on strong 

electron phonon coupling. The theory bases it argument on the concepts of the bisolitons 

(hole) pairs coupled with a single state due to the distortion of the –O-Cu-O-Cu- chain in the 

CuO2 planes. In the year 1990, Anderson made an assumption that in the cuprates the 

mechanism for coupling and formation of phase coherent are different. That year theorists 

explained the coupling mechanism that has a different origin but the origin of the long range 

phase coherence can be attributed to the spin fluctuation within the cuprate superconductors. 

In the year 1994, Alexandrov and Mott established that there was a difference between the 

wave function that describes the Cooper pairs and the order parameter of the Bose-Einstein 

condensate whose symmetries vary. 

In the year 1995, Emery and Kivelson demonstrated that long range phase coherence was a 

requirement for the mechanism of superconductivity in the cuprates. They further 

demonstrated the possibility of coupling above the 𝑇𝐶 without phase coherence. In the same 

year, Tranquada et al discovered the existence of coupled, dynamical vibrational charges 

(holes) and spins in Nd-doped La2−xSrxCuO4 cuprate superconductor by application of the 

neutron diffraction technique. 

In the year 1997, Emery, Kivelson, and Zachar formulated a theoretical model of the HTSC 

that was basing superconductivity on the strips of charge in the CuO2 planes.  

In the year 1998, Chakraverty et al tried to disapprove of the theory of the bi-polaron 

superconductivity of HTSC by stating that it was contradicting the experimental concepts on 

the same but failed to prove the same.  
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In the year 1999, Mourachkine established another theory of HTSC, in which he did an 

analysis of neutron tunneling and neutron scattering measurement and proved that in 

Bi2Sr2CaCu2O8+x and YBa2Cu3O6+x the phase coherence is as a result of spin excitations 

which leads to the formation of magnetic resonance peaks in inelastic neutron scattering 

spectra. The same year, Cronstrom and Noga came up with a new way of solving the BCS 

theory, by means of approximating the mean field which proved the existence if 

superconducting films and layer superconducting bulks.  

In the year 2001, Kivelson came up with a new way of increasing the superconductivity 

transition temperature. He proposed the creation of a multilayered HTSC having different 

concentrations of charge carriers in each layer. In this case, the layers with a low 

concentration of the carriers will be responsible for coupling while the one with a high 

concentration of the charge carries will be responsible for the phase rigidity. The coupling 

interactions become weaker while the concentration of the charge carriers is increased in 

relation to the Mott’s dielectric while the superfluid density which is responsible for the 

rigidity of the HTSC as related to the phase fluctuations increases with the increase of the 

charge concentration. Meaning the maximum 𝑇𝐶  is achieved at the state where there is equal 

prevalence for the phase fluctuation and coupling interactions. 

Cui 2002, proposed the relativistic mechanism of superconductivity. According to him, there 

exist two ways that determine the movement of the electrons in a superconductor which 

results in suppression of the electrons-electron repulsion and coulomb-coulomb repulsion and 

instead leads to predominant attraction. The free movement of these charge carriers results in 

superconductivity in the HTSC superconductors in what is referred to as electron gas because 
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of the balance between the attraction and repulsion of the electrons which leads to the theory 

of non-interacting particles in superconductivity. In the same year, it was shown that the 

cuprate HTS in the undoped regime are considered as non-dielectrics with high 

superconducting energy gap and small super-fluid density which then were referred to the 

gossamer superconductors. In this superconductor the brittle characteristic resulting from their 

coupled state hinders superconductivity. In the year 2004, Hussey et al, while investigating 

the angle of oscillation between the magnetic resistance in the HTS CuO6+δ, discovered that 

3D superconductors exist in such superconductors. This was proof of coherency against 

incoherency in the 𝑐 direction of the layered superconductor. 

In the year 2004, another universal scaling relationship that characterizes both the normal and 

the superconducting state was discovered by Homes in which the expression that governs 

superfluid component was given as  𝜌𝑠 = 𝐴𝑆𝑑𝑐𝑇𝑐 (Homes et al., 2004). where  𝑆𝑑𝑐 is the static 

specific conductivity and 𝑇𝑐 is the critical temperature and this was supposed to be carried out 

for all the HTS, with disregard to the magnitude of the  𝑇𝑐 , the type of carriers involved 

whether (holes or electrons), the extent of doping done, the nature of the crystal structure and 

the direction of current which is determined by the CuO2 planes and they are usually parallel 

or perpendicular in orientation. The value of the proportionality factor depends on the units of 

measurement involved. If the  𝜌𝑠 is measured in 𝑠−2, 𝑆𝑑𝑐 in (Ωcm)−1  and  𝑇𝑐 is K, then it 

takes the value of 120±25. The relationship applies even in superconductors operating at very 

low temperatures. The dependence is anisotropic in nature in such a way that the value of 𝜌𝑠 

may differ from one direction to the other, especially in the c axis. 
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In the year 2007, Alexandrov again explained the physics behind HTS in terms of the bi-

polarons mechanism (Hague et al., 2007). According to him, the HTS behaviors are different 

from those of a usual metal by the way that only quasi particles transfer current. For the 

metals, the mechanism of magnetic superconductivity exists, but the subsequent electron 

phonon coupling does not exist. 

2.14 Mechanism of Superconductivity 

The mechanism of superconductivity is associated with spin fluctuations within the atoms in 

the superconducting material. The mechanism can be explained using the following concepts. 

2.15 Cooper Pairs Effect 

When a material is subjected to very low-temperature equivalent to or less absolutely zero 

Kelvin, its electrons merge in twos to form cooper pairs. In most cases, this can be attributed 

to high pressure. The formed pairs are always free from collision with each other, and cannot 

be deviated even in the presence of impurities within the material. This makes their movement 

to be of zero electrical resistance. In metals and semiconductors of narrow band gap, the 

paired electrons always remain in a stable path even with the repulsion existing because they 

are of the same electrostatic kind. The explanation for this was given by Leon Coopers, Robert 

Schrieffer, and John Bardeen in what is referred to as BSC theory. The stability results 

because of two reasons: 

Firstly, the presence of other electron ions in the lattice acts as a shield to prevent more 

repulsion and scattering. Secondly, phonon which temporarily distorts the lattice during 

vibrational modes may create regions with positive ions that will end up attracting the electron 
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pairs. For this to happen the electrons must possess more kinetic energy than the phonon ions. 

For this reason, the BCS theory fails to explain superconductivity in high-temperature 

superconductors such as cuprate ceramics. The superconducting properties of the materials 

can only be attributed to the structure of the material which has a layer and there exists the 

hopping ions along with them later.  

2.16 Landau Theory 

This explains the dependence of superconductors on magnetic flux. The theory explains the 

variation of the magnetic flux with the penetration depth in a lattice. This can be represented 

in equation 2.49 before tunneling and equation 2.50 after tunneling. 

                                                      𝜑0 =
ℎ𝑐

2𝑒
          (2.49) 

                                                 ᵠ = (𝑛 +
1

2
)

ℎ𝑐

2𝑒
              (2.50) 

where(𝑛 = 0 ± 1……… ..) 

This theory was followed by the Josephson tunneling theory in which the superconductors are 

assumed to form barriers between the lattice of the nearest neighbors and the cooper pairs 

tunnel between the barrier. The critical current at the superconducting state is given by: 

           𝐽𝑐 = 𝐽𝑜 + ∆𝐽(∆ᵠ)            (2.51) 

Where  ∆ᵠ = ᵠ2 − ᵠ1 is the difference between two phases at a length of separation of the 

tunnel barrier. 

             ∆ᵠ=ᵠ2
0 − ᵠ1

0 − (2𝑒ђ𝐶) ∫ 𝑑𝑥𝐴𝑥
2

1
                                 (2.52) 
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  The cooper pairs current at 𝐴 = 0 and the voltage V are calculated as: 

          𝐽𝑐 = 𝐽0 + 𝐽1sin (ᵠ2
0 − ᵠ1

0 −
2𝑒

ђ
𝑉21𝑡)                      (2.53) 

       where 𝑉21 =
ђ

2𝑒
ᵠ21 

The penetration influence below 𝐵𝐶2  and due to the Meissner effect below 𝐵𝐶1 can be 

attributed to the external field due to the cooper pairs held by the critical magnetic fields. The 

type II superconductors with magnetic penetration flux 𝐵𝐶2  and Meissner effect below 𝐵𝐶1 is, 

as a result of external fields on the cooper pairs shown in Figure 2.2. 

 

 

Figure 2.2: A diagram indicating the superconducting state free of magnetic field and the 

normal state with magnetic fields. (Single-Slit Diffraction – University Physics Volume 3, 

n.d.).   
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Type II superconductors are characterized by 𝐵𝐶1 and 𝐵𝐶2  magnetic fields while type one is 

characterized by 𝐵𝐶1. At Hci type two superconductors are in a mixed state while type I are 

pure superconductors. 

The above behavior illustrates the strong link between superconductivity and magnetic 

behavior. For practical application, superconductors whose magnetic behavior grows 

proportionately are preferred. For high transition temperature superconductors, the 𝑇𝐶 can be 

calculated from Mc Millan’s equation. 

      𝑇𝐶 ∝< 𝜔𝑝ℎ > 𝑒𝑥𝑝 {
−1

𝜆
− µ∗}           (2.54) 

Where µ∗ is the characteristic effective Coulomb interaction between the paired electron. 

Electron-phonon coupling parameter is used to characterize superconductor semi metals and 

metals by using the density of states at the Fermi level (𝜀𝐹). 

        𝜆 = 2∫
𝛼2𝐹(𝜔)

𝜔

∞

0
𝑑𝜔                                              (2.55) 

      where 𝐹(𝜔) describes the phonon modes. 

2.17 Novel Superconductors 

The popular classes of novel high-temperature superconductors are cuprate superconductors. 

Their discovery was a milestone because of their practical capability. Among the first ones to 

be discovered were: La2−xSrxCuO4 and YBa2Cu3O7 by Bearnoz and Muller in the year 1986 

(“Examination of Patent Applications That Include Claims Containing Alternative Language,” 

2007). Higher TC ranging from 35K to 160K was achieved when these materials were 
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subjected to high pressure in HgBa2CaCu2O7−x (Physical Properties of Tissue: A ... - Google 

Books.) 

The materials portray very unique characteristics which include: an abrupt change in behavior 

by varying the hoping oxygen concentration in the CuO2  plane in the layered structure, lack 

of Fermi liquid behavior, and structural phase transition. 

The dependence of TC  on the oxygen concentration is an indicator that the phase changes 

which result from the fluctuation of the cooper pairs especially for under doped cuprates 

which are proportional to the quasi- particles as shown in the equation: 

   𝑇𝐶𝛼𝑛𝑠              (2.56) 

Where 𝑛𝑠 denotes how the variation of atomic concentration (doping) and depends on the 

superfluid density. This can also occur when a material is subjected to electron doping. 

Experimental and theoretical reports have shown that increasing the oxygen concentration 

increases the hole concentration but will decrease again due to the disappearance of the 

antiferromagnetic excitation of the spin. It should be noted that doping by the introduction of 

electrons (electron doping) in the d-orbitals of copper disorients the Cu-spins while varying 

the oxygen concentration (hole doping) at the p-orbitals destroys the long-range anti-

ferromagnetism hence improving the carrier transport for this group of materials (C. Chan et 

al., 2017). 

2.18 Related Studies In Re123 Superconductors 

The finding of the LaBaCuO superconductor ceramic system, which has a critical transition 

temperature between 30 and 40, led to the synthesis of other families of copper oxide-based 
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ceramics that have elevated critical temperatures (Alecu, 2004). These oxides include the 

YBaCuO series (Tc=90K), the BiSrCaCuO series (Tc=80-115K), and the TiBaCaCuO Tc=85-

125K.  

Second generation (2G) high-temperature superconductivity HTS wires, also known as coated 

conductors (CCs), have the potential to significantly transform the electric power industry by 

enabling the creation of environmentally friendly devices with high efficiencies and smaller 

sizes and footprints (Arute et al., 2019; Sung et al., 2008). ReBa2Cu3O7-x superconducting 

coating on textured metallic templates with functional buffer layers makes up 2G HTS wires. 

According to (Goldacker et al., 2014; Senatore et al., 2016) the availability of ReBaCuO 

second-generation high-temperature superconductor (2G HTS), can revolutionize novel 

electric machines and devices such as powerful motors, generators, and transformers. 

Improvement can be made in 𝐉𝐜 versus magnetic field performance of the 2GHTS wires 

through the replacement of the other rare metals with gadolinium. 
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2.19 Properties of High  𝐓𝐂 Superconductors 

Superconductivity is majorly characterized by the superconductivity transition temperature. 

Apart from the transition temperature, there are other factors that also contribute to the 

processes of superconductivity. They include; the critical magnetic field, penetration depth, 

coherence length, critical current density, weak link, and the energy gap. 

2.19.1 Anisotropy 

Almost all crystal structures of high temperature superconductors are highly anisotropic 

(Ando et al., 2002; Van Harlingen, 1995). This property plays a better role in both the 

physical structure and also the mechanical structure properties that are associated with 

superconductivity. The charge carriers in high temperature superconductors are usually holes 

that are brought about by the hopping oxygen in the crystal when that crystal is subjected to 

the conditions that will favor such hoping. This happens in the CuO2 plane. The flow of 

electricity in such a plane is highly anisotropic in which conduction parallel to the CuO2 plane 

experience more electricity than in the direction normal to the plane. Also, other properties 

such as; penetration depth, and energy gap are also anisotropic in nature.  The elastic 

properties of high temperature superconductors and associated mechanical properties are also 

anisotropic. The anisotropic factor in these high temperature superconductors, when they are 

optimally doped has a relationship with the spacing between CuO2 and the layers in the crystal 

of the unit cell. However, the anisotropy in these superconductors can be reduced by; doping 

by either applying pressure or varying the ion concentration of some of the elements within 

the compound of the materials. 
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2.19.2 Energy Gap 

The energy gap is a characteristic feature that is associated with all high temperature 

superconductors (Rieck et al., 1990, 1995). The energy gap exists in the low energy excitation 

within the crystal structure of the superconductor. In any superconductor, external energy 

(𝐸 ≥ 2𝑔), where 𝑔 is the energy gap, must be provided to move the electron-hole pair close to 

the Fermi surface. For the BCS high temperature superconductors that are weakly coupled the 

energy gap is related to the superconductivity transition temperature at 0K (Monthoux et al., 

1992; P. Monthoux, A. V. Balatsky, 1992; Rieck et al., 1995). The relationship is expressed 

by the equation; 

2𝑔(0)

𝐾𝐵𝑇𝑐
= 3.52              (2.57) 

Where 𝐾𝐵 is the Boltzmann constant. 

Anisotropy in terms of the energy gap is also observed in these superconductors in which the 

gap value along the 𝑐 axis and the 𝑎 − 𝑏 plane are noticed. For example for the YBCO, a ratio 

of  
2𝑔(0)

𝐾𝐵𝑇𝑐
 has been found to be ~3.5 when tunneling normally to the Cu-O plane and ~6 when 

tunneling parallel to the Cu-O plane.  

Also, experiment done using the magnetic resonance and photoemission measurement in the 

regime of under doping of the high temperature cuprates superconductors indicated the 

existence of an energy gap in the spin excitation state. The pseudo gap which is a major 

characteristic of superconductors occurs well above the superconductivity transition 
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temperature. The experiment further indicates that a spin gap is not found in the optimally 

doped cuprate superconductors. 

2.19.3Critical Current Density and Weak Links 

Apart from the superconductor transition temperature (Tc) and the critical magnetic field (Hc), 

the critical current density (JC), and weak links also play a major part in determining the 

transition from normal to the superconducting state of the superconductors. At the time of the 

discovery of the high temperature superconductors it was found that for bulk Tc materials, the 

current density is supposed to range from 10-100 A/cm2 at 77K. This was remarkably small in 

magnitude and was basically dependent on the method of synthesis of the superconductor. The 

low critical current density was attributed to the natural grain boundaries whose behavior was 

likened to the Josephson weak link. The Josephson weak link is basically localized regions 

within a superconductor where the superconducting properties of the superconductor get 

degraded. The effects of the weak links in critical current for the high temperature 

superconductors are different from that of low temperature superconductors. In the low 

temperature superconductors the weak link, the defects associated with the grain boundary 

increases the spinning effect and therefore increase the critical current but for the 

polycrystalline high temperature superconductor the grain boundary leads to reduction in the 

magnitude of the critical current. In high temperature superconducting materials where grain 

boundaries are absent, the critical current has been observed to be high in magnitude.  

2.19.4 Critical Magnetic Field 
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2.19.5 Penetration Depth 

Below the lower critical field (HC1) the external magnetic fields are completely expelled from 

penetrating into the superconductor due to the fields created by the super-current in the 

surface region, which induces a field that is exactly the same or greater than the applied field. 

The penetration depth is then considered to be the depth of the surface and the external field 

penetrates this surface in a decaying manner. For a material that is isotropic in nature, the 

relationship between the lower critical field and the penetration depth is given as; 

𝐻𝑐1 =
ᶲ𝑜

𝜆2
              (2.58) 
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Where ᶲ𝑜 is the flux quantum. 

Flux decoration and magnetic torque experiments have established the anisotropic nature of 

the penetration depth in high temperature superconductors. For these types of 

superconductors, the penetration depth along the c axis is different from those in the 𝑎 − 𝑏 

plane. For example, YBCO single crystal, the value of 𝜆𝑎𝑏(𝑇 → 0) is found to be 1400Ǻ. 

2.19.6 Coherence Length 

Coherence length describes the performance of a superconductor and it tells the correlation of 

the charge carrier in a superconducting medium. This means that it represents the magnitude 

of the cooper pairs. It can be presented in terms of the Fermi velocity (𝑣F), the 

superconducting transition temperature Tc, Boltzmann constant 𝑘𝐵, and Planck’s constant ℎ 

as:  

𝜉 =
ℎ𝑣𝐹

2𝜋2𝑘𝐵𝑇𝑐
              (2.59) 

From equation 2.59, it can be inferred that the high TC recorded in the high temperature 

superconductors is supposed to correspond to the low value of coherence length. This is 

observed in the cuprate superconductors which record low values of coherence length. The 

value of coherence length has been found to be very highly anisotropic for the high 

temperature superconductors. For example, the coherence length parallel to the c axis for a 

typical high temperature superconductor has a range of 2-5Ǻ and in the plane a-b it has a 

range of 10-30Ǻ. This means that normal to a-b plane the wave function is in an actual sense 

confined to the few adjacent unit cells. However, when considering the low temperature type I 
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superconductors, it is found that the coherence length is > 1000Ǻ which is far much high than 

the range of the high temperature superconductors. When the value of the coherence length is 

low like in the case of the high 𝑇𝐶, it means the coherence volume will contain a few cooper 

pairs which further means the fluctuation of the cooper pairs will be larger in these 

superconductors than in the conventional superconductor. Low coherence length makes a 

material to be sensitive to the available defects in the crystal such as the oxygen vacancies, 

dislocations, and deviation from the stoichiometry which promotes the phenomenon of 

superconductivity.  

2.20 General Properties of Superconductivity 

An electric field E⃗⃗  in a metal establishes a current. The current density J  and the electric 

density field are related by Ohm’s law: 

𝐽 = 𝜎�⃗�               (2.60) 

σ represents the electric conductivity. Electrical resistivity, ρ, is the reciprocal of conductivity. 

In metals, the charge carriers are the electrons. Electrons and discrete modes of vibration in 

lattices of crystals (phonons) collide intrinsically to provide resistance to electrical conduction 

in metals, while electrons conduction and defects and impurities within the crystal lattice 

collide extrinsically to produce resistance to conduction of electricity. 

The resistivity as described by Matthiessen's rule is given by the equation 2.61. 

  𝜌 = 𝜌𝐿 + 𝜌𝑖             ( 2.61) 
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 𝜆2 =
𝑚

𝜇𝑜𝑛𝑒2                        ( 2.62) 

 And the solution for the equation is: 

        
𝜕�⃗� (𝑍)

𝜕𝑡
=

𝜕�⃗� 

𝜕𝑡
𝑒−𝑍/𝜆           ( 2.63) 
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2.21 General Properties of Perovskites 

These are compounds with the general formula of ABO3 and the structure of a simple crystal 

of the perovskite material is shown in Figure 2.4. Four factors determine the stability criterion 

of a perovskite crystal namely; the Charge balance in the crystal, number of atom balance 

(stoichiometry), Oxygen balance, and Ionic radii balance (tolerance factors). 

 

Figure 2.3: Single crystal structure of a perovskite crystal. The yellow, red, and green 

elements represent the sites A, B, and O respectively. 

In considering the charge balance in the perovskite structure, charge balance is from the 

interaction between the positively charged ions and the negatively charged oxygen ions in the 
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crystal. The ions occupying the positions of A and B (Figure 2.4) possess a charge of 2+ and 

4+ respectively such that  these can balance the charge of 6- provided by the three oxygen 

atoms. When the balance is established the ABO3 structure becomes neutral. 

For the number of atoms in a perovskite structure to be considered balanced, the ratio of 1:1:3 

or its multiple must be maintained. However, for some layered perovskite structures, the 

concentration of some atoms may be reduced to achieve stability.  For a single perovskite 

crystal, the allowed number of atoms is five. 

To avoid the existence of defects in the crystal, there must be a balance in the oxygen 

concentration. A very slight change in the concentration of oxygen leads to a charge 

imbalance in the crystal affecting either site A or B. an equal balance of oxygen usually 

prevents such defects. 

The tolerance factor is the measure of the balance in the ionic radii of A, B, and O atoms in 

the crystal. It is possible to substitute atoms at sites A and B provided the ionic radii of the 

substituted atoms correspond with the radii of atoms in the sites. For example in the 

GdBa2Cu3O7-x, the Gd atom replaces one of the Ba atoms in the structure, and for the balance 

to occur the Gd must have a radius corresponding to Ba. The tolerance factor for the ABO3 

structure is given by; 

  𝜏 =
𝑅𝐴+𝑅0

√2(𝑅𝐵+𝑅0)
             (2.64) 

The allowed values for a stable perovskite structure are 0.8≤ 𝜏 ≥ 1.1  (Navrotsky, 1998; Priya 

et al., 2003; Vickery & Klann, 1957; Vittayakorn et al., 2003). 

2.22 Double Perovskite Structures 
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The double perovskite structures are formed when two different atoms say. B1 and B2 occupy 

the B site of the crystal structure. An example of a double perovskite structure is shown in 

Figure 2.4 below; 

 

Figure 2.4:  A2B1B2O6  double perovskite material. 

In  the Figure 2.4, the red and the blue elements present the B1 and B2 respectively. The 

yellow and the green elements occupy sites A and O respectively. In the double perovskite 

structures, the contribution of the atoms B1 and B2 are the same hence the preferred ratio is 

1:1 and the balance of the formula is equal between the two. The average charge for site B 

resulting from the two should also be 4+ meaning the atomic ions for B1 and B2 should have 

the charge of 2+ and 6+ or 5+ and 3+ or 4+ and 4+ such that the average becomes 4+. The 

tolerance factor of the double perovskite structures is given by equation 2.65. 
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 𝜏 =
(𝑅𝐴+𝑅𝑂)

√2((
𝑅𝐵1

+𝑅𝐵2
2

)+𝑅𝑂)

           ( 2.65) 

In some cases, the ratio of B1 to B2 may be unequal meaning the contribution of B1 to atomic 

balance is not the same as the contribution of B2. The preferred ratio for this case is 1:2 such 

that the formula can take the form 𝐴𝐵1
1

3
𝐵2

2

3
𝑂3.  

2.23 Applications of Perovskites 

The perovskite structure comprises rich metallic phases which can be expressed by ABO3 in 

which the A site is occupied by the main metallic elements in the periodic table while 

comprising mainly of the transition metals. Also, the perovskites can be considered in terms of 

the variation of the anions and cations which measure the degree of stability. The ability of 

these structures to vary the number of ions affects the physical properties of the structures 

which can determine their various areas of application. Examples of the perovskites that 

readily form the anion and cation vacancies include NaxWO3, Sr2SrTaO5.5, high Tc cuprates 

superconductors, Aurivilius phases, and brownmillerite structures. These perovskites portray 

good magnetic, dielectric, electronic, elastic, and catalytic properties for various technological 

and industrial applications. 

The BaTiO3 perovskite has been reported to have very high dielectric properties (Galasso, 

1969; Shirane et al., 1957). This property finds application in the manufacturer of capacitive 

components. Oxide perovskites that are not cuprate in nature such as Ba(Bi1-Pbx)O3 and (La1-

xCax)MnO3 portray superconducting and magnetostrictive properties (Fontcuberta et al., 1996; 

Hwang et al., 1995). 
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Chemical substitution of one or more atoms in the oxygen site in the structure of the 

perovskite material can also improve the properties for technological and other applications. 

One such application includes the development of dielectric resonators and filters which can 

be used in microwave signal devices such as mobile phones and other wireless devices (Dutta 

& Sinha, 2011). A high dielectric constant coupled with the permittivity of these perovskites 

can also be used to make the electro-optic modulators. The electro-optic form special 

components in the transient field electroluminescence TFEL panels which form part of the 

computer display panel. 

The electrostrictive actuators which are the components that modify electrical signals based 

on the magnitude of the frequency have a perovskite structure. Upon application of an external 

field in these materials, the atomic positions can undergo a slight shift which can lead to 

permanent polarization of the material. Electrostrictive actuators are used in projectors for 

submarines and surface vessels which enhances communication.  

Perovskite with giant magnetoresistance (GMR) is characterized by high sensitivity in the 

presence of the magnetic field. This class of materials is applied in magnetic data storage and 

retrieval (Vickery & Klann, 1957). 

If site B of a double perovskite material is substituted by two different transition metals the 

structure of the perovskite changes leading to changes in different properties of the newly 

formed material. Some of the new properties that can be formed include; stable structure, 

ferromagnetic, magnetoresistance, and magneto capacitive properties (Kumar et al., 2019; 

Mitra et al., 2018). Examples of the materials that belong to this class of materials are the 

high-temperature cuprate superconductor (HTS). This class of materials can be used in the 
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fabrication of HTS thin film devices, thermoelectricity, solar applications, energy conversion 

systems, and photocatalysis. 

2.24 Structure and Classification of Superconductors 

Materials with a general structure of the form ABO3 are considered to have a perovskite 

structure.  The site occupied by elements usually comprises of the rare earth metals to the 

alkaline earth metal and the site is usually at the corner of a crystal lattice. Site B is usually 

occupied by the ions from 3d to 5d transition metal elements. At a stable state, the 

orthorhombic and the tetragonal crystal lattice are the ones that form the majority of members 

of this group. Some perovskites undergo distortions while others do not. The degree of 

distortions is determined by the elements that occupy site A. For example In GdBa2Cu3O7- 

which is a layered perovskite the Cu-O-Cu change of bond angle happens and as a result, the 

crystal undergoes lattice distortion.  

2.24.1 Classification of Perovskite 

Based on the unique properties that are displayed by the perovskite both in the theoretical and 

application spectrum they can be categorized as Superconducting perovskites, colossal 

magnetoresistance perovskites, Piezoelectric & ferroelectric perovskites, and other categories. 

2.24.2 Superconducting Perovskites 

 

There are many superconducting superconductors but a well-studied group is the cuprate 

superconductors because of the potential practical application based on the high 
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superconducting transition temperature they are capable of achieving. These cuprates are 

characterized by distortions, and deficiency of oxygen and are usually made of layers that 

alternate between the Cu-O2 planes where superconductivity takes place in the layers.  This is 

made possible because of the changes in the spin from the antiferromagnetic spin when they 

are doped. Some of the possible areas of application of these perovskites include; electrical 

transmission, reducing the power loss in transformers, and Superconducting digital circuits. 

2.24.3 Colossal Magneto Resistance Perovskites 

These are perovskites that depend on the magnitude of temperature and magnetic field in their 

efficiency. An example of this class of perovskites is the LaMnO3 which is an 

antiferromagnetic (AFM) insulator in which the ferromagnetic (FM) coupling lies in the 

MnO2 planes and the antiferromagnetic (AFM) coupling between the planes. When the 

material is doped with Ca in the range of 0.2 <×< 0.5 the material undergoes paramagnetic 

to ferromagnetic transition upon cooling or metal to insulator (MI) transition. When the 

concentration of Ca is kept high, at the ground state the material remains antiferromagnetic 

and thus a nonmetal(Progress, 2016).   

The interest of these superconductors lies in their potential applications in electronic, 

magnetic, and structural properties. Some of the applications of these superconductors 

include; Hybrid cells, Sensors, and Magnetic data storage. 

2.24.4 Piezoelectric and Ferroelectric Perovskites 

These perovskites can either have a center of geometry or lack to have a center of geometry. 

Some of those which lack the center of geometry exhibit polarization on the application of 
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mechanical stress and this is attributed to the electrical dipole moment that exists in their 

crystal lattice. If the electric dipole moment is reversed by the application of an electric field 

then the material is ferromagnetic and is referred to as ferroelectric (FE) and if the temperature 

is used to reverse the electric dipole moment then the material is said to be pyroelectric (PE). 

Some of the applications in this category include microphone sensors, piezoelectric motors, 

and Vibration dampers. The Figure below shows the variation of magnetization with 

temperature for La1−xCaMnO3. 

  

Figure 2.5: Normalization of magnetism (M) as a function of temperature (T).  

 

The curve eventually normalizes with the variations of concentration as indicated in the 

legend presented in Figure 2.5. 

2.25 Gadolinium Barium Copper Oxide (GdBa2Cu3O7-x) 
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GdBa2Cu3O7-x has a perovskite structure. The structure is cubic and may possess some 

distortion. The orthorhombic and tetragonal phases are the most common variants. The 

structure of the material is presented in Figure 2.6. 

 

Figure 2.6: The structure of gadolinium barium copper oxide perovskite structure.  

GdBa2Cu3O7-x is of interest as an example of a magnetic ion-containing superconductor (Xie, 

2014). Compared to other rare earth metals 123 perovskites, it exhibits maximum known Neel 

temperature, TN=2.2K. Experimental data show that it has Tc=90K. In 2011 the perovskite 

sample was applied in making more flexible cables than ever before (Литовцы, 2018). It is 

believed that GBCO exhibits high irreversible magnetic fields and high critical current density 

under a high magnetic field as compared with YBCO, and hence more promising for 

application (J. P. Zhou et al., 2002). The superconducting properties change reversibly with 

strain even before mechanical damage occurs. Reversible change is caused by the pressure 

dependence of 𝑇𝑐 of the superconductor. 
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Taking the analogy of  YBa2Cu3O7-x, the structure of GdBa2Cu3O7-x is considered a defect 

perovskite lattice based on the fact that it has three copper (Cu) cubes at the center with 

oxygen (O) vacancies ordering and Gadolinium-barium (Gd-Ba) along the 𝑐 axis of the crystal 

(Beno et al., 1987). The expected perovskite formula for the crystal is (GdBa)3Cu3O9-𝑥 to 

match the expected perovskite order. Of the two vacancies (𝑥=2) one occurs in the third CuO 

plane, along the 𝑎 axis for example at the site (0.5, 0, 0). This gives the crystal orthorhombic 

symmetry. The gadolinium (Gd) and the two barium (Ba) ions are ordered along the 𝑐 axis 

and the other oxygen vacancy occurs along the Gd plane. The CuO2 planes and the CuO chain 

give the characteristic property of the crystal structure. The chain consists of O1 and Cu1 

atoms located at the (0,
1

2
,0) and (0,0,0) respectively. The O4 atom is located between the Cu1 

atom at the coordinates (0,0,zO4) along the 𝑧 axis. In comparison with other copper-Oxygen 

bond lengths, it is found that Cu1-O4 has the shortest distance of separation. Cu1 is fourfold 

coordinated with the oxygen (O) ions and every O1 ion is shared among two Cu1 atoms. Cu2 

which is located at (0,0,zCu2) along the 𝑐 axis of the crystal and has O2 and O3 lying side by 

side at the sites (
1

2
,0,zO2) and (0, 

1

2
,xO3) respectively. Taking the measurements in the units of 

𝑐, then for YBa2Cu3O7-x we have zCu2=0.3574, zO2=0.3767, zO3=0.3804, and zO4=0.1542 

(Beno et al., 1987). By varying the concentration of oxygen in such a way that the value of 𝑥 

in the GdBa2Cu7-x takes a value of 𝑥 > 0.5 the structure undergoes polymorphic 

transformation to a tetragonal phase. The ideal symmetry for this phase occurs when 𝑥 = 1 

and the formula becomes GdBa2CuO6 which happens by the removal of O1 from the CuO 

chain. The same effect of polymorphic transition can occur when the orthorhombic phase of 

the structure is subjected to high temperatures. 
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2.26 The Electronic Structure of the Cuprate Perovskites 

In  cuprate superconductors, it is the ionic forces and size that determine the structure and the 

stability if their crystal structure. For this reason, most of the known perovskites are ionic 

insulators. In this group of materials, the formal valence is closely related to the actual charge. 

The total charge over a given unit cell must vanish due to its integral nature. The assignment 

of the formal valence for the high temperature superconductor such as GdBa2Cu3O7-x derived 

from the fact that Alkaline earth metals are dispositive; rare-earth metals and lanthanides are 

tripositive and oxygen is doubly negative. 

2.27 Superconductivity and Hole Concentration in the GaBa2Cu2O7-x  

Previous studies have indicated that the substitution of the O2+ ions in the cuprate perovskites 

can cause an increase in the hole concentration in the Cu-O layer that influences 

superconductivity in the perovskite (Antipov et al., 2002; Manuscript, 1972). The introduction 

of more holes in the copper layer can be based on the position of Cu2+ cation in the structure.  

The increase of the hole concentration to 𝑥 = 0.5  explains the ability of the Cu-doping in 

concentrating mobile holes which play a major role in inducing superconductivity on the non-

superconducting GaBa2Cu2O7-x with 𝑥 = 0. The effect of increasing the hole concentration 

results in to increase in the superconducting transition temperature when the resistance is zero 

(𝑇𝐶
𝑅=0). By varying the concentration of the oxygen ions in the structure, changes in the 

physical and electronic properties are noted. The changes can be attributed to the change in 

the charge balance in the Cu-O layer and the CuO2 plane. During the flow of electrons in the 

process of conductivity, the layer serves as a reservoir of the charges from which the copper 
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planes receive the outflow. The decrease in oxygen concentration results in a decrease in the 

Tc. The effect of the hole concentration leads to the changes in the structure of the material 

and the phenomenon of superconductivity disappears as the value of 𝑥 goes beyond 0.5. It is 

therefore important to note the shift of the electronic structure to the metallic phase can be 

explained in terms of the structural changes that affect the shift of the Fermi level and so the 

density of states at the Fermi level. 

2.28 The Diffusion of the Hoping Oxygen in  GdBa2Cu3O7-x 

The hopping oxygen in cuprate superconductors is one of the factors that influence the 

properties of the superconductors and thus plays a big role in determining the potential 

application of the superconductor in different fields. The basic mechanism of diffusion of 

oxygen is largely linked to point defects. The diffusing oxygen obeys the equation of diffusion 

given by;  

 
𝜕

𝜕𝑥
(𝐷

𝜕𝐶

𝜕𝑥
) =

𝜕𝐶

𝜕𝑡
                        (2.66)  

The equation represents a one dimensional diffusion in which the concentration of the 

diffusing element, 𝑥 is the space coordinates, 𝑡 is the time taken for the diffusion to take place 

and 𝐷 is the diffusion coefficient. There are two types of diffusion gradient; the tracer 

diffusion gradient and the chemical diffusion gradient. Of interest is the chemical diffusion 

gradient which gives a description of the diffusion under a chemical potential.  The chemical 

diffusion can be looked at in terms of the sample being equilibrated to less than two oxygen 

partial pressure (𝑃𝑂2) and the sample being equilibrated to a new (𝑃𝑂2) under the influence of 

the diffusing oxygen defined by a different diffusion coefficient (�̅�) which gives a measure of 
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oxygenation. The value of (�̅�) is calculated from the time dependent properties such as the 

electrical resistivity of the sample as oxygen equilibrates with the new partial pressure (𝑃𝑂2), 

calculation of relaxation time  𝑡 and the diffusion coefficient from 𝑡, and the use of the linear 

space dimension 𝑥 under which the diffusion takes place using the relation;  

                                           𝐷 =
𝑥2

6𝑡
                                             (2.67)    

𝐷 is a second rank tensor and takes three values for an orthorhombic crystal structure 

(Dissertations, 2015), one parallel to the principle crystallographic axis. This helps to explain 

the differences in the diffusion coefficient in different directions especially, in the anisotropic 

crystal structures such as the cuprate superconductors. 

2.29 Transport Properties of the Cuprate Perovskites 

The transport properties of the cuprate perovskite superconductors are based on the existence 

of the cooper pairs which is basically the attraction between the nearest neighbor electrons. 

This can be explained in terms of the way the other toms respond to the first electron. This 

happens when the atoms get attracted to the first electron in pairs and as a result of that, they 

start to fall off around the position of that electron. On the arrival of the second electron, the 

atoms get disturbed and in the process, they provide it with a strong attractive force. In this 

model, the first electron is said to turn over with a sudden quick movement of the spin of one 

atom in the crystal lattice and in the process the atom interacts with the second electron. In the 

GdBa2Cu3O7-x the electrons which are the charge carriers are conducted along the CuO planes. 

The directional resistivity is much more in the direction normal to the plane and that parallel 

to the plane is lower. 
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2.30 Point Defects 

Atomic transport is enhanced through the motion of point defects and therefore is related to 

the thermodynamics of the defects through the concentration and the defect equilibrium 

(Bolse, 1994; Freysoldt et al., 2014). The stoichiometry of all the superconducting oxides 

deviates from the normal because of the point defects in those superconductors (Cava RJ, 

1990; Gazquez et al., 2016). Majorly the defects are more on the oxygen but can also occur in 

the other cations and electronics defects electrons and holes. The cation and the electronic 

defects coupled with the electronic mobility term lead to the normal electrical properties of the 

structure which may include; conductivity, thermoelectric power, and the Hall Effect (Chung 

et al., 2012; Witting et al., 2019). These defects also affect the critical transition temperature 

and the conductor to superconductor transition. By incorporation of the interstitial oxygen, the 

equilibrium can be expressed by the equation; 

                                                              
1

2
𝑂2 ⇔ 𝑂𝑖 + 2ℎ̇                                                      (2.68) 

Or by filling the oxygen vacancy; 

                                              �̈�𝑂 +
1

2
𝑂2 ⇔ 𝑂𝑜 + 2ℎ̇                                    (2.69) 

In which the Kröger–Vink notation has been used in the description (Kröger & Nachtrieb, 

1964). 

2.31 Diffusion in GdBa2Cu3O7-x: Structure and Point Defects 
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The structure of the GdBa2Cu3O7-x plays a vital role in enhancing oxygen diffusion which 

brings about the phenomenon of superconductivity (Mccoy, 2020; Pereiro et al., 2011). The 

Cu and O in the orthorhombic crystal of  GdBa2Cu3O7-x are arranged in CuO2 planes such that 

 

The oxygen vacancies come not by means of doping the structure by cation but by changing 

the condition of either partial pressure or temperature on oxygen and a corresponding charge 

of the �̈�𝑂 is compensated by the resulting hole concentration changes (Fay, 1967). Random 

distribution of the �̈�𝑂 occurs when x is nearing zero (Engineering et al., 1991). When the 

magnitude of x becomes finite, �̈�𝑂 tends to align in a string like format since the Cu ions are 

on the opposite side of  �̈�𝑂 and tend to form unfavorable configuration (Mehta et al., 1992). 

The full and empty strings also reorder at 𝑥 = 0.5 in which case the O(1) alternates between 

full and empty rows. 

2.32 The Future Prospects of Perovskites Materials 
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The expected future dimension on the perovskites is anchored on coming up with uncombined 

perovskites through methods such as the optimized interface of materials. This is geared 

towards increasing both the performance and stability and other properties which are likely to 

shift the organic compounds to inorganic compounds. The driving factor in the manufacture 

and modification of perovskites is majorly based on increasing efficiencies. With it invention 

of the 2D perovskites and the improved interface materials, there have been reduced 

drawbacks and increased efficiency. 

In relation to perovskites solar cells, the effect of the external environmental conditions they 

have on the lead halide perovskite greatly affects the performance of the solar cell as it 

reduces the stability of the cell. As a resul,t there is a need to  have devices with strong 

stability, light absorbing substrate, and electron and hole substrate which are very crucial in 

terms of the practical implementation of the device. Secondly, the hole carrying device for the 

device is very costly and affects the synthesis process for the cells. Thirdly, it is difficult to 

deposit thin films of the perovskites in the solar cell using the traditional method and hence 

some other methods should be devised to allow high quality perovskites for solar cells, 

especially for commercial use. Fourthly, the radioactive nature of the lead element that is used 

in perovskite solar cells is extremely harmful and may affect the production of such cells. 

Lastly, there is insufficient information on the micro-mechanic system to clearly describe the 

perovskite solar cells. Therefore, there is a great need to come up with theoretical models to 

give a full description and at the same time define how the efficiency of such a cell can be 

achieved. Also, research should be increased to not only increase the performance of the 
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peroveskte solar cells but also come up with new materials that are simpler and more 

effective. 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER THREE 

METHODOLOGY 

3.1 Theoretical Methods 

3.1.1 Many Body Schrӧdinger Equation   

Properties of quantum materials whose properties cannot be described by semi classical means 

can only be addressed by a quantum mechanical system (Woolley & Sutcliffe, 1977). For 

these groups of materials, electronic structure is analyzed by solving the Schrӧdinger 
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equation. In quantum mechanics, it is the wave function that holds all the information about a 

system. Once the wave properties have been obtained other associated properties can be 

predicted. Some of these properties include; the polymorphic phase transition, elastic 

properties, magnetic properties, nuclear vibrational modes, and charge density. This is 

obtained by solving the time-independent Schrӧdinger equation. 

𝐻𝜓(𝑟, 𝑅) = 𝐸(𝑅)𝜓(𝑟, 𝑅)        

Where,  

        𝐻 =   −∑
ћ2

2𝑀𝑗
∇𝑗

2𝑁
𝑗 − ∑

ћ2

2𝑚𝑖
∇𝑖

2 + ∑ ∑
𝑍𝑗𝑍𝑝

|𝑅𝑗−𝑅𝑃|
− ∑ ∑

𝑍𝑗𝑒

(𝑟𝑖−𝑅𝑗)

𝑁
𝑗=1

𝑛
𝑖=1

𝑁
𝑝>𝑗

𝑁
𝑗

𝑛
𝑖 +

               ∑ ∑
𝑒2

|𝑟𝑖−𝑟𝑞|
𝑛
𝑞>1

𝑛
𝑖=1                                                                                                (3.1) 

 

3.1.2 The Born-Oppenheimer Approximation 

The approximation treats electrons to be far light in mass as compared to the ions. This means 

that the kinetic energy of the electrons is much higher compared to those of the ion. The 

response of the electrons to the ions represents the true ground state which then can be used to 
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calculate the ground state energy of the system. The position of the ions is assumed not to 

vary because if they do so, it will lead to a multidimensional ground-state potential energy 

surface. In this case, the motion can better be described by classical mechanics because of the 

particle-like behavior of the classical particle in the electrostatic potential. The approximation 

further explains that potential energy due to nuclei and nuclei repulsion has a constant value 

which then changes the Hamiltonian to become an electronic Hamiltonian equation 3.2. 

             �̂�𝑒 = −
1

2
∑ ∇𝑖

2𝑁
𝑖=1 − ∑ ∑

𝑍𝐴

𝑟𝑖 𝐴 
𝑀
𝐴

𝑁
𝑖=1 + ∑ ∑ 1 = �̂� + �̂�𝑁𝑒 + �̂�𝑒𝑒

𝑁
𝑟𝑖𝑗

𝑁
𝑖=1             (3.2) 

The wave function ѱ𝑒 becomes the solution for equation 3.2 where �̂�𝑒 is the total 

Hamiltonian for the system. Since the nuclear coordinates are not presented in the ѱ𝑒 the 

wave function, the total energy then becomes the total sum of the electron energy and that 

which results from the electrostatic repulsion between the nuclei.  

                                            𝐸𝑁 = ∑ ∑
𝑍𝐴𝑍𝐵

𝑅𝐴𝐵

𝑀
𝐴

𝑀
𝐵>𝐴               (3.3) 

Therefore,              

  𝐸𝑇𝑜𝑡𝑎𝑙 = 𝐸𝑒 + 𝐸𝑁              (3.4) 

The operator �̂�𝑁𝑒 in the equation 3.2 is the external electron-nuclear electrostatic attraction 

potential. This external potential can be influenced by external magnetic or electric fields. 

3.1.3 Density Functional Theory 

The density functional theory (DFT) is anchored on the principle that for a system of many 

interacting particles, their properties are basically the functional of their ground state density 
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(𝜌). The ground state density determines all the information about all the wave functions for 

the ground state and even the exited states. The main objective of the density functional theory 

is to calculate the ground state energy of a many-body system. This is achieved by solving the 

time-independent Schrödinger equation based on the Born-Oppenheimer approximation such 

that; 

𝐻𝛹(𝑟1, 𝑟2 ……𝑟𝑛) = 𝐸𝛹(𝑟1, 𝑟2 ……𝑟𝑛)                             (3.5)

                                       

In the equation, the Hamiltonian is a sum of the kinetic energy, interaction with the external 

potential (𝑉𝑒𝑥𝑡), and the electron-electron interaction (𝑉𝑒𝑒) and thus; 

                                     𝐻 = −
1

2
∑ ∇𝑖

2 + �̂�𝑒𝑥𝑡 + ∑
1

|𝑟𝑖−𝑟𝑗|

𝑁
𝑖<𝑗

𝑁
𝑖                (3.6) 

In computational DFT, the external potential of interest is the interaction between the 

electrons and the nuclei and is expressed as; 

�̂�
𝑒𝑥𝑡=−∑

𝑍𝛼
|𝑟𝑖−𝑅𝛼|

𝑁𝑎𝑡
𝛼

                                               (3.7) 

3.1.4 The Independent Electron Approximation 

The independent electron approximation can be considered in two ways; the non-interacting 

and the Hartree-Fock. The two approaches apply the same concept in explaining the behavior 

of electrons in a system by assuming that the electrons are not related and do not interact and 

therefore considered to obey the Pauli’s Exclusion principle. The only difference is that in the 

Hartree Fork approximation, the coulomb potential resulting from the interaction between 

electrons is considered while the energy of correlation that results from those interactions is 
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ignored. Generally even when considering the non-interacting situation, the theories try to 

bring in some aspect of real interaction that incorporates the real interaction in the effective 

Hamiltonian. According to Hartree, there exists a different potential for each electron because 

He was subtracting a certain term from the electron based on the orbital. Later an 

improvement was done on the same to come up with an effective potential in what we call the 

Hartree-Fork method. 

3.1.5  The Non-Interacting ( Hartee-Like) Electron Approximation 

3.2 The calculations that are involved in the treatment of the non-interacting electrons 

involve the solution of the Schrӧdinger equation; 

 �̂�𝑒𝑓𝑓 𝛹𝑖
𝜎(𝑟)=𝐸𝑖

𝜎𝛹𝑖
𝜎(𝑟)                         (3.8)                  Where Ĥeff is the 

effective Hamiltonian whose effective potential acts on the two spin in an electron presented 

by 𝜎 at a distance 𝑟. Just like any quantum mechanical system, the ground state for the non-

interacting electrons is usually taken to be that with a minimum energy value of the 

Schrӧdinger equation and at the same time obey the Pauli’s exclusion principle. In the event 

the Hamiltonian does not depend on the spin up or the spin down, then the system is 

considered to be degenerate, and in computation, the spins are considered as a factor of two. 

3.2.1 Hartree Fork Theory 

The theory provides a better scheme for solving the many electrons wave function. This is 

because Electron-electron potential energy in it is the main complication in electronic 

structure calculation.  The method is built on the fundamentals of molecular orbital theory, in 
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which every single electron motion can be described by a single wave function that is 

independent of the motion of other electrons. It is built after applying the Born Oppenheimer 

approximation as discussed above. We start by writing the wave function in the form of the 

Hartree product as by equation 3.9. 

   ѱ𝐻𝑃(𝑟1, 𝑟2, ………… . . , 𝑟𝑁) = ∅1(𝑟1)∅2(𝑟2)……… . ∅𝑁(𝑟𝑁)            (3.9) 

The equation fails to obey the antisymmetric principle ( half integral spin) which states that 

any wave function describing fermions should be antisymmetric to the interchange of the 

intrinsic space-spin coordinates within the system. Letting 𝛼 and 𝛽 be the spin coordinates 𝜔 

the space-spin coordinate can be expressed as; 𝑥 = {𝑟, 𝜔}. Also, the spatial orbitals ∅(𝑟) are 

transformed to 𝜒(𝑥) spin-orbital. The spin functional possess a very important feature; they 

should be orthonormal and hence makes the computational process become possible. The 

overall energy is the sum of one-electron energies and the overall wave function will be 

expressed as a product of the one-electron wave function. Thus, the Hartree product can be 

written as: 

 ѱ𝐻𝑃(𝑥1, 𝑥2, ………… . . , 𝑥𝑁) = 𝜒1(𝑟1)𝜒2(𝑟2)……… . 𝜒𝑁(𝑥𝑁)          (3.10) 

For the equation to satisfy the antisymmetric principle, we introduce the concept of the Slatter 

which ensures that the wave function does not vanish if any more than two spin orbitals 

become equal. The Slatter determinant is expressed as by the equation;         

 ѱ = [
 𝜒1(𝑥1) ⋯  𝜒𝑁(𝑥1)

⋮ ⋱ ⋮
 𝜒1(𝑥𝑁) ⋯  𝜒1(𝑥𝑁)

]                       (3.11) 
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The equation is an approximation against Fermi Dirac statistics and the Pauli Exclusion 

Principle. To solve the problem, an n-electron wave function is written not as a simple product 

of one electron spin-orbital, but as a Slater determinant built on the n spin orbitals. The Slater 
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 𝐸𝑇𝑜𝑡 = 𝐸𝑘𝑖𝑛 + 𝐸𝑝𝑜𝑡             (3.13) 

                                  𝐸𝑇𝑜𝑡 =
ћ2𝛼

𝑚
∫𝜌(𝑟)

5

3 𝑑𝑟 + ∫𝑉(𝑟)𝜌(𝑟)𝑑𝑟                                  (3.14) 

where 𝛼 =
3

10
(3𝜋2)2 3⁄  

Also includes electron-electron interaction which comes in two ways. 

Coulomb interaction: 

 𝐸𝑐𝑜𝑢𝑙 =
𝑒2

8𝜋𝜀𝑜
∬

𝜌(𝑟)𝜌(𝑟′)

|𝑟−𝑟′|
                       (3.15) 

Exchange energy per unit volume of position: 

          𝐸𝑒𝑥 =
𝑒2𝛽

8𝜋𝜀𝑜
𝜌(𝑟)

4

3                                  (3.16) 

If integrated over the whole space the exchange energy is; 

           𝐸𝑒𝑥 =
𝑒2𝛽

8𝜋𝜀𝑜
∫ 𝜌(𝑟)

4

3𝑑𝑣            (3.17) 

The correlation is the difference between exact electron-electron interaction and the 

contributions from Coulomb and exchange. 

3.2.2 Thomas and Fermi Model 
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This is purely a quantum statistical model of electrons in a system in which the kinetic energy 

of the electrons is considered while the electron-electron interactions and the nuclear-electron 

interactions are considered to be classical. The kinetic energy functional is given by the 

equation;  

 𝑇𝑇𝐹[𝜌 �⃗⃗� ] =
3

10
(3𝜋2)

2

3 ∫ 𝜌
5

3(𝑟 )𝑑𝑟                                 (3.18) 

The kinetic energy is then combined with the classical equation in which the nuclear-electron 

attractive Coulomb potential and the electron-electron repulsive Coulomb potential give the 

total Fermi energy for the system and given by the equation;  

𝐸𝑇𝐹[𝜌(𝑟 )] = 𝑇𝑇𝐹[𝜌 �⃗⃗� ] =
3

10
(3𝜋2)

2

3 ∫𝜌
5

3(𝑟 )𝑑𝑟 − 𝑍 ∫
𝜌𝑟 

𝑟
𝑑𝑟 + 

1

2
∬

(𝜌𝑟 1,𝜌𝑟 2)

𝑟12
d𝑟 1𝑑𝑟2  

            (3.19)   

The equation is the true definition of the density functional theory. It tells how the density of a 

system can be used to compute the ground state energy without any additional information 

including the wave function and basis sets. 

3.2.3 Hohenberg-Kohn Theorem  

Energy can be described exclusively using electron density. Considering several electrons and 

nuclei, enclosed in a large box and moving under the influence of external potential V(r) and 

mutual interaction. The Hamiltonian of such a system can be described by the equation; 

 �̃� = �̃� + �̃� + �̃�             (3.20) 
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 𝐸[𝜌] = 𝑇[𝜌] + 𝑉𝑒𝑥𝑡 + 𝑉𝑒𝑒           (3.23) 

The Khon-Sham method defines a practical way to solve the Density functional theory 

equation by approximating the kinetic energy and the electron-electron interaction functional 

to ensure proper minimization of energy. The method introduces a system defined by N 

electrons that are free of interaction and described by a single determinant wave function of ∅𝑖 

orbitals as explained in the Hartree-Fock method. The kinetic energy of the system and the 

electron density are known exactly from the knowledge of the orbitals. Thus, the Kinetic 

energy is given as; 

 𝑇𝑠 = −
1

2
∑ ⟨∅𝑖|∇

2|∅𝑖⟩
𝑁
𝑖            (3.24) 

Where the electron density is given by; 

       𝜌(𝑟) = ∑ |∅𝑖
2|

2𝑁
𝑖             (3.25) 

Considering the electron-electron interaction from the classical perspective, the Hartree 

coulomb potential is given by; 

𝑉𝐻 =
1

2
∬

𝜌(𝑟1)𝜌(𝑟2)

|𝑟1−𝑟2|
𝑑𝑟1𝑑𝑟2             (3.26) 

The energy functional can then be written as: 

                                  𝐸[𝜌] = 𝑇𝑠[𝜌] + 𝑉𝑒𝑥𝑡[𝜌] + 𝑉𝐻[𝜌] + 𝐸𝑥𝑐[𝜌]                     (3.27) 

Where 𝐸𝑥𝑐 is the exchange-correlation functional term that is supposed to take care of the 

inaccuracies made by using the non-interacting kinetic energy and by giving the electron-

electron interaction a classical treatment. The energy functional equation 3.27 can be written 
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in terms of the density of non-interacting electrons and by application of the vibrational 

principle, the orbitals that lead to the minimization of the energy can be expressed as; 

 [−
ћ2

2
∇2 + 𝑉𝑒𝑥𝑡(𝑟) + ∫

𝜌(�́�)

|𝑟−�́�|
+ 𝑉𝑥𝑐(𝑟)] ∅(𝑟) = 𝐸𝑖∅𝑖           (3.28) 

The 𝑉𝑥𝑐 is given as: 

                        𝑉𝑥𝑐 =
𝛿𝐸𝑥𝑐[𝜌]

𝛿𝜌
            (3.29) 

If the vibrational principle is applied in equation (3.28) under the constraint that the total 

number of electrons remains constant, we get the equation; 

             
𝛿𝐸[𝜌]

𝛿𝜌(𝑟)
=

𝛿𝑇

𝛿𝜌(𝑟)
+ 𝑉𝑒𝑥𝑡(𝑟) + ∫

𝜌(�́�)

|𝑟−�́�|
+

𝛿𝐸𝑋𝐶

𝛿𝜌(𝑟)
= 𝜇         (3.30) 

The necessary condition for the Lagrange multiplier 𝜇 is that the number of particles must be 

conserved. The above equations indicate the possibility of creating a system of the interacting 

electron as a non-interacting system. 

 

3.2.4 The Kohn-Sham Equation 

The Kohn Sham equation is generated by the introduction of three terms in the energy 

functional: 
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i. The kinetic energy of the non-interacting N-electron system term 𝑇𝑠(𝑛) thus  

kinetic energy becomes: 

      𝑇[𝑛] = 𝑇𝑠[𝑛] + 𝑇𝑐[𝑛]             (3.31) 

𝑇𝑐[𝑛] ≪  𝑇[𝑛] hence 𝑇𝑠[𝑛] contributes the majority of the kinetic energy. 

ii. The atomic coulomb 𝑉[𝑛] can be presented as the sum of the Hartree term 

𝐸𝐻[𝑛] and another contribution ∆𝑈[𝑛] which results from the quantum nature 

of the interacting electrons: 

 𝑈[𝑛] = 𝐸𝐻[𝑛] + ∆𝑈[𝑛]                       (3.32) 

iii. The exchange-correlation: 

 𝐸𝑥𝑐[𝑛] = 𝑇𝐶[𝑛] + ∆𝑈[𝑛]           (3.33) 

The exchange correlation is supposed to account for the Pauli repulsion for electrons with 

similar spin and the correlation that compensates for the self-interactive term. Thus, the exact 

energy functional should be as by equation 3.34. 

                          𝐸[𝑛] = 𝑇𝑆[𝑛] + ∫𝑑3 𝑟𝑉𝑒𝑥𝑡(𝑟 ) + 𝐸𝐻[𝑛] + 𝐸𝑋𝐶[𝑛]                     (3.34) 

The variation equation for the exact functional is thus;  

                      
𝛿𝐸[𝑛]

𝛿𝑛(𝑟 )
=

𝛿𝑇𝑆[𝑛]

𝛿𝑛(𝑟 )
+ 𝑉𝑒𝑥𝑡(𝑟 ) + 𝑒3 ∫𝑑3�́� [𝑛] + 𝐸𝑋𝐶

𝑛(𝑟)́⃗⃗⃗⃗ 

|𝑟 −�́� |
= 𝜇         (3.35) 

3.2.5 Pseudopotential Plane-Wave Method 

The method solves the DFT by considering the valence electrons and treating the core 

electrons as frozen. Being frozen means that their charge density is never affected by the 
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chemical processes in an atom. This approximation scheme is based on the fact that a 

pseudopotential is always weaker in the core region than the true coulomb potential of the 

nucleus and does not bear singularity to the nucleus. As a result, the pseudo wave functions at 

the core region become smooth and nodeless therefore, the pseudopotential and the pseudo 

waves can be presented using the plane-wave basis sets in which fewer electronic states are 

used in the calculation. The pseudopotential is generalized in such a way that they satisfy the 

norm conservation criteria which ensures that the charge concentration in the core region of 

the pseudo-atom is similar to that of the actual atom. For accurate results when using the 

plane-wave pseudopotential method, an accurate representation of the wave function from the 

basis sets is necessary. Based on the Bloch theorem, the Khon-Sham equation can be 

expanded in plane waves if the system is considered to be periodic, which gives a three-

dimensional Fourier series expansion. The convergence of the expansion depends on the 

highest kinetic energy (kinetic energy cutoff value) of the plane wave when the series 

terminates.  

3.2.6 Pseudopotentials 

The pseudopotentials are formed based on the orthogonalized plane waves (OPW). In this 

case, the valence wave functions are expanded by utilizing the basis sets of plane wave 

functions that are orthogonal to the core states wave functions (𝜑𝑐) such that; 

                 ∅𝑂𝑃𝑊(𝑘 + 𝐺) =  ∅𝑃𝑊(𝑘 + 𝐺) − ∑ < 𝜑𝑐|∅𝑂𝑃𝑊(𝑘 + 𝐺) > 𝜑𝛼,𝑐𝛼,𝑐            (3.36) 

Where ∅𝑃𝑊 is the plane wave and ∅𝑂𝑃𝑊 is the corresponding orthogonalized plane and the 

sum is done over all the atoms and core states. From the above equation, a pseudopotential 
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can be constructed by considering a Hamiltonian (𝐻)  with both the core (𝜑𝑐) and the valence 

(𝜑𝑣) wavefunctions. The pseudo-states for the system then can be presented as; 

      𝜑𝑐(𝑃𝑆) = 𝜑𝛼,𝑐 + ∑ 𝑎𝑐,𝑣𝜑𝛼,𝑐𝛼,𝑐            (3.37) 

Applying the Hamiltonian in equation 3.37, above,     

   𝐻|𝜑𝑐(𝑃𝑆) >= 𝐸𝑣|𝜑𝑐(𝑃𝑆) > +∑ 𝑎𝑐,𝑣(𝐸𝛼,𝑐 − 𝐸𝑣)|𝜑𝛼,𝑐𝛼,𝑐 >           (3.38) 

Where 𝐸𝛼,𝑐 and 𝐸𝑣 are the core and the valence eigenvalues respectively. By   

defining 𝑎𝑐,𝑣 as: 𝑎𝑐,𝑣 =< 𝜑𝛼,𝑐|𝜑𝑐(𝑃𝑆) >, we can have;   

 [𝐻 + ∑ 𝑎𝑐,𝑣(𝐸𝑣 − 𝐸𝛼,𝑣)||𝜑𝛼,𝑐 >< 𝜑𝑣(𝑃𝑆)|𝛼,𝑐  ]𝜑𝑣(𝑃𝑆) = 𝐸𝑣(𝑃𝑆)𝜑𝑣(𝑃𝑆)          (3.39) 

The pseudo-states satisfy the above equation which is similar to the Schrödinger equation by 

the introduction of the additional potential defined by:  

𝑉𝑅 = ∑ 𝑎𝑐,𝑣(𝐸𝑣 − 𝐸𝛼,𝑣)||𝜑𝛼,𝑐 >< 𝜑𝑣(𝑃𝑆)|𝛼,𝑐            (3.40) 

The difference between the normal potential and 𝑉𝑅 is based on the dependence of 𝑉𝑅 on the 

valence eigenvalue (𝐸𝑣). This additional potential to the initial potential 𝑉 gives the Phillips-

Kleinman pseudopotential which is defined by: 

𝑉𝑡𝑜𝑡 = 𝑉𝑅 + 𝑉             (3.41) 

Where 𝑉𝑡𝑜𝑡 is the Phillips-Kleinman pseudopotential. 

3.2.7  Types of Pseudopotentials  
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The pseudo potentials can be classified into three types namely; the norm-conserving, ultra 

soft and projector-augmented waves (PAWs). The choice of any of the pseudo potentials 

depends on the accuracy desired when working in different systems. 

3.2.8  Norm-Conserving Pseudopotentials 

The basic requirement for this type of pseudopotentials is that the norm of the pseudo 

functions is the same as the norm of all electron wave function. This is supposed to ensure that 

the exchange-correlation energy that will be by the pseudopotential is very accurate. In order 

to achieve this, a non-local pseudo potential in which every angular momentum uses different 

potentials is used.  The pseudopotential that use the non-local norm conserving 

pseudopotentials is able to describe the scattering properties associated with ions in different 

structures. 

3.2.9 Ultrasoft Pseudopotential 

In this type of pseudopotential the cutoff radius is made large than that of the norm conserving 

pseudopotential. This is supposed to be an approximation where the norm conservation 

constraints are relaxed. With this, the kinetic energy cutoff value is reduced resulting into 

smoother valence electrons. The smoothness of the valence electrons reduces the wave 

function describing the system thus making the solution of the Khon-Sham equation faster. 
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Figure 3.1: The graph of pseudo wave functions and all electron wave function and the 

pseudopotential and all electron potential as a function of radius.   

The Figure 3.1 above presents the replacement of stronger ionic potential with the pseudo 

potential and this gives the same valence electron wave functions when the radius is greater 

than the critical radius (𝑟𝑐)  (𝑟 > 𝑟𝑐). Beyond 𝑟𝑐, the scattering properties for both the pseudo 

and the all electron wave function become the same. Below the 𝑟𝑐 the pseudo wave function 

has no nodes. 

3.2.10 Electron Density 

We consider N-electron particles in a Coulomb potential 𝑉𝑒𝑥𝑡(𝑟 ) for a spin compensated 

system. The Hamiltonian for a many-body Schrodinger equation is presented as; 

𝐻 = ∑ [−
ђ2

2𝑚
∇𝑖

2 + 𝑉𝑒𝑥𝑡(𝑟 𝑖)]
𝑁
𝑖=1 + ∑

𝑒2

𝑟 𝑖−𝑟𝑗
𝑖>𝑗           (3.42) 

Taking the ground state energy 𝐸0 to be a functional of the external potential (𝑉𝑒𝑥𝑡) we have 

𝑉𝑒𝑥𝑡: 𝐸0 = 𝐸[𝑉𝑒𝑥𝑡]. Then we can easily transform the state |𝜑 > of the energy 𝐸[𝜑] to the 
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ground state |𝜑0 > of energy 𝐸[𝜑0]. If we take the wave function of 𝑁 electrons to be 

ѱ(𝑟 1, ………… . 𝑟 𝑁), the electron density for the system will be given by; 

                          𝑛(𝑟 ) = 𝑁 ∫𝑑3𝑟2 ……… . . ∫ 𝑑3𝑟𝑁 |ѱ(𝑟 1, 𝑟 2 … . . 𝑟 1, 𝑟 𝑁,|
2
         (3.43) 

The equation implies that if we have the Hamiltonian to solve the Schrodinger equation to get 

the wave function, we can be able to get electron density meaning𝐻 ⇒ 𝑛(𝑟). Similarly, we 

can use the wave function to get the Hamiltonian of a system 𝑛(𝑟) ⇒ 𝐻. In this case, we 

consider an electron gas whose density is 𝑛0(𝑟 ) and the corresponding Hamiltonian will take 

the form of: 

       𝐻 = ∑ [−
ђ2∇𝑖

2

2𝑚
−

𝑍𝑒

|𝑟 𝑖−�⃗� |
+ ∑

𝑒2

|𝑟 𝑖−𝑟 𝑗|
𝑖>𝑗 ]𝑁

𝑖=1           (3.44) 

Where 𝑍, and 𝑅 are the positive charges of the nucleus and the position of the nucleus 

respectively. The number of electrons 𝑁 is calculated by taking the integral over space of the 

electron density as; 

 𝑁 = ∫𝑑3𝑛0(𝑟 )            (3.45) 

And 𝑍 is determined by:      

     𝑍 = [
𝑎0

2𝑛0𝑟 
 
𝜕𝑛0

𝜕𝑟
]            (3.46) 

Where 𝑎0 is the Bohr radius of hydrogen. Hence with the knowledge of 𝑁 and 𝑍 we can get 

𝑛(𝑟) ⇒ 𝐻. According to Hohenberg and Kohn in 1963, they generated the two possibilities 

and concluded that provided there is a fixed number of electrons, and arbitrary potential, both 

     𝑛(𝑟) ⇒ 𝐻 and 𝐻 ⇒ 𝑛(𝑟) is possible and it led to two theorems: 
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i.  For degenerate ground states, two different Hamiltonian energy cannot have the same 

ground-state electron density. Therefore, it is possible to define the ground state 

energy as a functional of electron density 𝑛(𝑟); 𝐸 = 𝐸[𝑛]. 

ii. 𝐸(𝑛) is minimal when 𝑛(𝑟 ) is the actual ground-state electron density. 

The ground state energy is achieved by minimizing 𝐸(𝑛). This is possible by 

application of the Hohenberg and Kohn second theorem in which 𝐸[𝑛] is required to be 

minimum when the electron density 𝑛(𝑟 ) is at ground state with the condition that: 

 ∫𝑑3𝑟𝑛(𝑟 ) = 𝑁             (3.47) 

This condition is achieved when we use the Langrage multiplier as follows: 

i.  A functional with a constraint is introduced on the electron density such that;  

  𝐸[𝑛] = 𝜇 ∫𝑑3 𝑟𝑛(𝑟 )            (3.48) 

Where 𝜇 is the Langrage whose function is to maintain the number of electrons 𝑁. 

ii.  Another functional is also formed in which the Langrage is kept as a free parameter 

while searching for zeros: 

 0 =
𝛿

𝛿𝑛(𝑟)
[𝐸[𝑛] − 𝜇 ∫ 𝑑3 𝑟𝑛(𝑟 )] =

𝛿𝐸[𝑛]

𝛿𝑛(𝑟)
− 𝜇          (3.49) 

iii. The constraint 𝜇 is determined. At 𝑇 = 0𝐾 𝜇 can be determined from the Fermi 

energy. 
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3.2.11 Vibrational Principle  

The variation principle provides means of establishing approximations up to the lowest energy 

eigenstate and in some cases the excited states (McClean et al., 2017; Slater & Johnson, 

1972). Therefore it provides means in which wave functions can be better approximated. For 

the principle to be applied in solving the Schrödinger equation an appropriate Hamiltonian 

operator for the system is set. From the Schrödinger equation (3.42), it is important to note 

that actual information about a system is contained in the number of electrons 𝑁 and the 

external potential 𝑉𝑒𝑥𝑡. The external potential is determined by the position and charges of all 

the nuclei in a system. The other parts such as the electron-electron repulsion are not specific 

for a particular system. Considering an expectation value of a particular observable can be 

presented by the operator �̂� and by using a complex wavefunction, the normalized equation 

takes the form. 

< �̂�  >= ∫……… . ∫𝝋𝒕𝒓𝒊𝒂𝒍
∗ �̂� 𝜑𝑡𝑟𝑎𝑖𝑙 𝑑𝑥1𝑑𝑥2 …… . . 𝑑𝑥𝑁 = 〈𝜑𝑡𝑟𝑎𝑖𝑙 |�̂�|𝜑𝑡𝑟𝑎𝑖𝑙 〉       (3.50) 

Where 𝜑𝑡𝑟𝑖𝑎𝑙
∗  is the conjugate of   𝜑𝑡𝑟𝑎𝑖𝑙 . 

If the above equation is used to calculate in the calculation of energy as the expectation value 

of the Hamiltonian operator �̂� then for any trial wave function (𝜑𝑡𝑟𝑎𝑖𝑙 ) will be an upper 

bound to the true energy of the ground state and this is described by equation 3.51.  

 〈𝜑𝑡𝑟𝑎𝑖𝑙 |�̂�|𝜑𝑡𝑟𝑎𝑖𝑙 〉 =  𝐸𝑡𝑟𝑖𝑎𝑙 ≥ 𝐸0 = 〈𝜑𝑜 |�̂�|𝜑𝑜 〉         (3.51) 

Where 𝜑𝑜 and 𝐸0  are the functions that gives the lowest energy and the lowest energy 

respectively. 
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For one to get the ground state energy, it is required that the functional 𝐸[𝜑] be minimized by 

the way of searching the wave functions that fulfill the properties of a quantum mechanical 

wave function for the N electrons. This is supposed to make the normalization of equation 

3.51 possible. The ground state energy can then be expressed by equation 3.52. 

 𝐸0 = min
𝜑→𝑁

𝐸[𝜑] =min
𝜑→𝑁

〈φ|𝑇 + 𝑉𝑁𝑒 + 𝑉𝑒𝑒|φ〉           (3.52) 

Where 𝜑 → 𝑁 is the allowed N electron wave function; 

3.2.12 Ground State Properties 

Total ground state energy helps to characterize important properties that can be used to give a 

full description of different materials. Some of these properties are discussed below. 

3.2.13 Equation of state 

It is based on the assumption that the first derivative of the pressure of a bulk modulus does 

not depend on the pressure but if it does the dependence is near negligible. This can be 

expressed by equation 3.53 such that; 

 
𝜕𝐵

𝜕𝑃
= 𝐵𝑂

′ = ∫
𝜕𝐵

𝜕𝑃

𝑉𝑂

𝑉
            (3.53) 

Where 𝑉𝑂 is the equilibrium volume. 

     𝐵(𝑉) = 𝐵𝑜 (
𝑉𝑜

𝑉
)
𝐵𝑜

′

            (3.54) 

By integrating  𝑉𝑂 several times the equation lead 

Repeated integration gives pressure of the system; 

 𝑃(𝑉) = [
𝐵𝑂

𝐵𝑂
′ (

𝑉𝑂

𝑉
)
𝐵𝑂

′

− 1]        (3.55) 



 91   

   

   The total energy involved then becomes. 

 𝐸(𝑉) = 𝐸𝑜 +
𝐵𝑜

𝐵𝑜
′ 𝑉 (

(𝑉𝑜/𝑉)𝐵𝑜
′

𝐵𝑜
′−1

+ 1) −
𝐵𝑜𝑉𝑜

𝐵𝑜
′−1

        (3.56) 

Where 𝐸𝑜 is the energy at equilibrium volume. 

The second-order equation of state is given by ; 

                              P(V)=
3

2
𝐵𝑜 [(

𝑉𝑜

𝑉
 )

7

3 − (
𝑉𝑜

𝑉
 )

5

3] {1 +
3

4
(𝐵𝑜

′ − 4) [(
𝑉𝑜

𝑉
 )

2

3 − 1]}            (3.57) 

Equally, we can use the Morse type of equation of state. The total energy is fitted by an 

exponential function. 

 𝐸(𝜔) = 𝑎 + 𝑏𝑒−𝜆𝜔 + 𝑐𝑒−𝑧𝜆𝜔                (3.58) 

The equation is expressed in terms of Wigner-Seitz radius 𝜔; 𝜆, 𝑎, 𝑏 𝑎𝑛𝑑 𝑐 are the Morse 

parameters. 

3.3  Exchange - Correlation Functional 

3.3.1   Local Density Approximation 

This approach provides means by which the exchange-correlation functional for a 

homogeneous electron gas can be approximated by the use of local density. For this method, 

the exchange-correlation functional is given by the equation; 

  𝐸𝑋𝐶
𝐿𝐷𝐴[𝜌] = ∫𝜌(𝑟)𝜀𝑋𝐶 (𝑟)𝑑𝑟                 

(3.59) 

In which 𝜀𝑋𝐶  represents the exchange-correlation energy of the homogenous electron gas 

moving around the nucleus without interactions and whose density is given by 𝜌(𝑟) at every 

point 𝑟. Local density assumes the absence of the derivative of 𝜌(𝑟) in the equation of the 
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exchange energy functional which means it only applies in the situation where the electron 

density varies slowly with the position. Local spin-density approximation (LSDA) is an 

improvement on the local density approximation (LDA) to include the spin to ensure the Pauli 

Exclusion Principle is obeyed in the calculation. The accuracy of the function is much 

contributed by the fact that there exists cancellation of errors in the exchange and correlation 

estimations; LDA overestimates the 𝐸𝑋 and underestimates 𝐸𝐶. The overestimation of 𝐸𝑋 and 

underestimation of 𝐸𝐶 is a result of the LDAXC hole satisfying the sum rule in the homogenous 

electron gas system as opposed to the individual exchange-correlation. This happens when the 

integrated error in the correlation cancels that in the exchange. LDA has the potential of 

achieving a high degree of accuracy for metallic solids whose electrons are delocalized. 

However, the LDA has a challenge when used for materials with strongly localized and 

correlated electrons such as the transition metal oxides and the rare earth metal compounds 

(Ernzerhof & Scuseria, 1999). For localized electrons, the functional overestimates the 

binding energies and underestimates the bonding distances between atoms. 

3.3.2  Spin Local Density Approximation 

The exchange-correlation function can be expressed in terms of the spin density instead of the 

electron density alone. The two spin densities 𝜌𝛼 and 𝜌𝛽 are in such a way that their sum is the 

total electron density of the system𝜌𝛼 + 𝜌𝛽 = 𝜌. From the theoretical point of view, the spin 

densities may not contribute much to the exact functional if the external potential does not 

depend on the spin but it adds the advantage of flexibility by having two variables instead of 

one. The spin functional has the advantage when dealing with a system with an even number 

of electrons which allows the breaking of symmetry. The spin local density approximation 
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exchange-correlation energy is given by the equation 𝜌𝛼(𝑟) = 𝜌𝛽(𝑟) =
1

2
𝜌 (in the case of spin 

compensated situation) and we can have a spin-polarized case which is characterized by,   

𝜌𝛼(𝑟) ≠ 𝜌𝛽(𝑟) and the degree of spin polarization depends on the difference between the two. 

Polarization is given by the equation (3.60). 

   𝜉 =
𝜌𝛼−𝜌𝛽

𝜌
                       

(3.60) 

Where 𝜉 takes a value of zero for the spin compensated case and a value of one for fully spin 

polarization in the situation where the electron density comprises the same kind of spin. 

3.3.3 Generalized-Gradient Approximations in Density-Functional Theory 

The LDA only gives better estimations when dealing with a system of uniform electron 

distribution but is poorly estimated for non-uniform electron distribution. This means that the 

exchange-correlation energy 𝐸𝑋𝐶𝜌(𝑟 ) depends only on the electron density at all points in the 

system. The incorporation of the electron density gradient along with the electron density 𝜌(𝑟 ) 

in a functional known as the generalized gradient approximation GGA gives better results. 

In the GGA method, the exchange-correlation energy 𝐸𝑥𝑐
𝐺𝐺𝐴(𝜌 ) is a function of the local spin 

electron densities and their gradients (Peverati & Truhlar, 2012).  

                                     𝐸𝑋𝐶
𝐺𝐺𝐴(𝜌(𝑟 )) = ∫𝜌(𝑟 )𝜀𝑋𝐶(𝜌(𝑟 )), ∇(𝜌(𝑟 ))𝑟                         

(3.61) 

Generalized gradient approximation is a powerful tool in computational material science. Its 

strength is based on the improvement in the efficiency of local density approximation. The 



 94   

   

commonly used GGA approximation is based on the Perdew, Burke, and Ernzerhlo of the 

(PBE) functional. This approximation has the potential of correcting the interaction energies 

for massive molecules and solids and can give a better estimation of bond length irrespective 

of the bond strength. This new version of the GGA functional, which shares several properties 

with the exact exchange and correlation functional, has relatively good accuracy. However, 

the scheme tends to underestimate the bulk modulus in solid systems (Madsen & Singh, 

2006). GGA in the computational study is implemented using the plane wave code in which 

the Fourier transform is used to the reciprocal lattice in space of the potential energy and 

density of the material. The accuracy of the GGA functional used depends on the type of 

pseudopotential used. The formation of the pseudopotential is moderated by its proper choice 

and that it will fit the all-electron system. A good cell parameter is obtained by matching the 

pseudo potential eigenvalues with a good wave function in the GGA and this is achieved by 

minimizing the cutoff radius in the pseudopotential (Rivero et al., 2015). The generalized 

gradient approximation is built by considering the exchange correlational functional, in which 

the exchange energy is considered in terms of the Coulomb interaction energy of an electron 

and its exchange-correlation hole. The application of GGA in computational DFT has been 

found to improve properties such as the ground state energy, bond length, and the dissociation 

energy for molecules and solids which are made up of light atoms (J. Sun et al., 2016; Yu et 

al., 2016). The lattice parameters calculated using GGA are found to agree with experimental 

results as opposed to those calculated using the LDA which are found to have an error of the 

range of 1-4% below the experimental value (Cococcioni et al., 2003). In the estimation of the 
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exchange and correlation energies, the LDA and GGA are reported of having an error of 14% 

and 1% respectively. 

3.3.4 Exchange Correlation and Band Gap Approximation 

The application of the DFT using the LDA and GGA functional is known to underestimate the 

band gap of a crystal when the results obtained are compared with the experimental values 

(Marlow et al., 2018; Piskunov et al., 2004; Stampfl et al., 2001). If we consider an electron in 

the state 𝛷 and assume that it is removed from the system such that; 

  𝐸𝑁 − 𝐸𝑁−1 = 𝜖ᶲ                 

(3.62) 

Where 𝐸𝑁 is the total energy of the system having 𝑁 electrons. Also, we can have a situation 

where an electron is added to a state say, ∅ which gives𝐸𝑁+1 − 𝐸𝑁 = 𝜖∅. From the two 

equations, the band gap can be defined by the difference between the largest additional energy 

and the smallest removal energy. The energy gap is defined by the equation; 

 𝐸𝑔 = 𝜖∅ − 𝜖ᶲ = 𝐸𝑁−1 + 𝐸𝑁+1 − 2𝐸𝑁                

(3.63) 

In solid materials, this marks the onset of optical transition, in the event the gap is direct; 

where the lowest empty state and the highest occupied state lie in the same high symmetry 

points (Larson et al., 2007; Meng et al., 2017). The highest occupied and the lowest 

unoccupied states are called the highest occupied molecular orbital (HOMO) and lowest 

unoccupied molecular orbital (LUMO) respectively (Rajalakshmi et al., 2015; Silvarajoo et 



 96   

   

al., 2020). The additional and removal energy  is referred to as electron affinity (A) and 

ionization potential (I) respectively. Because of the discontinuity of the exchange and 

correlation potential, then we can well say, 𝐸𝑔 =I-A. This can be expressed by the equation;  

 𝐸𝑔 = 𝜇(𝑁 + 𝛿) − 𝜇(𝑁 − 𝛿) =
𝛿𝐸

𝛿𝑛(𝑟)
|
𝑁+1

−
𝛿𝐸

𝛿𝑛(𝑟)
|
𝑁−1

              

(3.64) 

Where 𝛿 → 0. The equation is substituted into the Khon-sham form for the energy functional 

given as, E[𝑛(𝑟)]. The Hartree and external potential do not play any part in the determination 

of the 𝐸𝑔 of the system because they do not yield discontinuity. Considering a system of non-

interacting electrons, only the kinetic term contributes the energy and the gap for such a 

system is given by the equation; 

 𝐸𝑔
0 =

𝛿𝑇0

𝛿𝑛(𝑟)
|
𝑁+1

−
𝛿𝑇0

𝛿𝑛(𝑟)
|
𝑁−1

 = 𝜖𝐿𝑈𝑀𝑂 − 𝜖𝐻𝑂𝑀𝑂                

(3.65) 

It should be noted that the kinetic energy of the non-interacting electrons considered as a 

functional of density must have a discontinuous derivative when crossing an integer number 

of electrons. This makes it absolutely difficult to produce a functional of charge density for 𝑇0 

that can give results which are exact. 

For the system comprising of interacting particles, the band gap energy can be expressed as; 

 𝐸𝑔 =
𝛿𝑇0

𝛿𝑛(𝑟)
|
𝑁+1

−
𝛿𝑇0

𝛿𝑛(𝑟)
|
𝑁+1

+
𝛿𝐸𝑋𝐶

𝛿𝑛(𝑟)
|
𝑁+1

+
𝛿𝐸𝑋𝐶

𝛿𝑛(𝑟)
|
𝑁−1

𝐸𝑔
0 + 𝐸𝑔

𝑥𝑐                    

(3.66) 
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The above equation shows that the kinetic energy term is evaluated at the same charge density 

as the non-interacting system and so it coincides with the non-interacting system gap. From 

equation (3.66) it implies that the energy gaps calculated by DFT are not the same as the true 

gaps because they are lacking the 𝐸𝑔
𝑥𝑐 term resulting from the 𝑋𝐶 functional. This is what 

leads to the underestimation of the band gap by the DFT. 

3.3.5 Computational Methods 

In this work, all the computational calculations were carried out in the framework of density 

functional theory (DFT) as implemented by the Quantum Espresso package. The atomic 

orbitals were expanded by the use of the plane wave basis sets.  The plane wave 

pseudopotentials were used to treat the electron-ion interaction to reduce the computational 

cost by reducing the number of wave functions to be solved. We employed the local density 

approximation (LDA) and generalized gradient approximation (GGA) to calculate the ground 

state energy of the system. GGA in the computational study is implemented using the plane 

wave code and the pseudopotential method. The pseudopotential plane-wave self-consistency 

field package scripted within the Quantum Espresso code executed the self-consistency field 

calculations. The cut-off kinetic energy for the calculation was set at 60Ry after optimization 

of the simple orthorhombic structure.  A full description of the valence electrons was achieved 

by using the PBE pseudo-potentials of Perdew-Burke-Enzenhof kind formulated by 

Vanderbilt code. The convergence threshold in the solution of the Khon-Sham equation was 

set at 10-12
 (eV) for the self-consistency calculations. The valence configuration used for 

GdBa2Cu3O7-x was 4f7 5d1 6s2 for Gadolinium, 6s2 for Barium, 3d104s1 for Copper, and 2s2 

2p4 for Oxygen. The Brillouin sampling was based on the Monkhost scheme. The K-point 
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mesh in the Brillouin zone was set to 6× 6×2 generated based on the reciprocal scheme. 

During the optimization, the lattice parameters for the three axes were varied. A plot of energy 

versus cell dimensions was drawn to establish the minimum energy followed by minimizing 

other parameters. Proper atomic positions were established by relaxing their position (relax), 

and the proper volume was established by varying the cell volume (vc-relax). Relax, and vc-

relax is calculations implemented by quantum espresso. 

3.3.6 Computation of the Ground States 

 In most cases, there is aneed not to go about minimizing all the Khon-Sham states in the 

solution of the Schrödinger equation. Since the interest of solving the Schrödinger equation 

lies on the occupied bands only, there is a need to find a minimization method that will suit 

that interest and this is achieved through computation of the ground states. 

3.3.7 The Ground State 

The ground state energy forms the basis for calculating any physical property in the density 

functional theory (DFT) (Hafner & Wolverton, 2006; Mazin et al., 2008). Therefore this 

quantity must be precisely calculated with efficiency and in a way that makes the 

computational cost in terms of time to be cheap. 

3.3.8 The Total Ground State Energy and the Electron Density 

For the DFT to properly make a good argument on the algorithm that it operates on, the total 

ground state energy must be self-consistence. This means that the input parameters must give 

the output which then is ploughed back as an input. For example, the occupied Khon-Sham 
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states generate density which again depends on the potential which is generated from the 

density. Therefore the ground state will be only achieved when the self-consistence has been 

achieved. Based on the relationship between the ground state energy and the ground state 

density, it can be inferred that self-consistence can only be achieved at the minimum energy. 

The process is done by starting with a set of wave functions 𝛹𝑖,𝑘 which generates a trial 

density 𝑛(𝑟). The trial density is then used to calculate the Khon–Sham 𝑉(𝐾𝑆) and the 

starting energy 𝐸. The total energy is then minimized in relation to the wave function in the 

Khon-Sham potential to give another set of wave functions  𝛹𝑖,𝑘 which upon solution give a 

new ground state density 𝑛(𝑟) and new total energy 𝐸. This total energy is compared with the 

one for the previous iterations. In the event the energy is within the tolerance level, the 

convergence is assumed to have occurred since the energy variation between the cycles is 

within the tolerance level (convergence threshold). The flow chart showing the process is 

presented in Figure below; 
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        Figure 3.2: A flow chart diagram for the DFT computation process. 

3.3.9 Wave Functions 

The Khon-Sham wave function is the exact solution to an electron gas in the Khon-Sham 

equation. The equation can be solved by writing it in matrix form where it becomes an 

eigenvector problem and this is achieved through matrix diagonalization in which an 

assumption is that they will generate degenerate eigenvalues. In the matrix diagonalization, 

the direct matrix diagonalization is proportional to the 𝑛𝑝𝑤
3  where 𝑛𝑝𝑤 is the number of the 

basis sets. By using plane wave basis sets, the value of 𝑛𝑝𝑤 may be approximately hundreds 

of thousands which is like to make the diagonalization become expensive in terms of the 

computational time required. Taking a Hamiltonian matrix to be of the form 𝑛𝑝𝑤
2 , the resulting 

direct diagonalization gives lower value of wave functions to the range of tens which is much 

lower than the occupied states. Another possible way to make the computation less expensive 

is by the use of the iterative technique. The technique provides a way in which the lowest 

number of wave functions can be found by direct minimization of their energy by the use of 

the Khon-Sham Hamiltonian. For a spin polarized system in insulators, the number of bands 

can be restricted to the number of the available electrons. But for metallic conductors, the 
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number of electrons must be so large in order to cover for the bands which are normally 

partially occupied. 

3.3.10 Real Space Grid 

Since there is never enough memory to hold all the wave functions to be used in the 

computation process, a finite Fourier series is normally used. According to the Nyquist-

Shannon sampling, the series is represented in the real space by the use of a discrete set of 

points. The points are able to represent all the wanted information stored in the Fourier series. 

Taking the Fourier space grid to be of the form; 𝑁𝑥,𝑁𝑦, 𝑁𝑧 components, then the real size of 

the space grid is given as 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 On this, fast Fourier transform (FFT) uses the divide 

and conquer algorithm to reduce the computational complexity of the matrix. The fast Fourier 

transform operates in such a way that the number of coefficients is a small multiple of a small 

prime number. By application of the convolution theorem, those terms that are products of the 

wave function such as the electron density, high order Fourier components are usually 

produced to a magnitude that is twice those of the wave function.  For this to be achieved the 

basis sets must be large and the real space must be fine.  The finer grid plays a role in 

determining the derivative of quantities on the grid even in high order terms. Furthermore, the 

fine detail has got a small influence on the total energy and density of the system which makes 

it possible to limit the number of the Fourier series the product term to the number of the wave 

functions. 

3.3.11 Reciprocal Space Sampling 
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There is always a need to sample the occupied electronic state by selecting some points in the 

Brillouin zone. The selection must be done accurately so that they can enable accurate 

solutions of the wave functions in a given system. In the solution of the Khon-Sham equation, 

the selected points interact with the electron density resulting in an efficiency solution of the 

Khon-Sham equation by keeping updates at the end of the Khon-Sham minimization. The 

usual criterion of sampling is by the use of the unbiased grid which bears evenly distributed 

points in a 3 dimensional grid called the Monkhurst-Pack grid. It is usually presented as 𝑛 ×

𝑛 × 𝑛  and captures interactions between the nearest neighboring cells. 

3.3.12 Orthonormality 

For the proper solution of the Khon-Sham equation, the sampled electronic which are the 

eigenstate of the Hamiltonian are required to be orthogonal. However, orthogonality is never 

achieved by direct diagonalization of the Hamiltonian and therefore, must be imposed on the 

wave functions. This is made possible by the application of the orthogonalization scheme to 

both trial wave functions and to the direction of search by application of the Gram-Schmidt 

scheme. The scheme is chosen due to its simplicity and ease of implementation. Each vector 

in turn is orthogonalized to the set of vectors that have been already orthogonalised. This is 

done by calculating the 59 projectors of the vector onto this set and removing this projection 

from the original non-orthogonal vector.  

3.3.13 Phase Transitions under Pressure 

Technological advancement has made it possible to study material with wide variation of 

pressure thus altering the properties associated with the material. The changes in the material 
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properties are attributed to the decrease in the inter atomic distances in the structure which can 

possibly lead to the material changing from a semiconductor to a metallic-like structure due to 

the close packing factors at higher pressure. Under high pressure, the material undergoes 

volumetric change and as a result, stability of the structure gets affectd. It is of great 

importance that the theoretical approaches and experimental approaches are used to accurately 

predict the stability of the polymorphic changes that are associated with the volumetric 

changes resulting from the bonding changes as a result of pressure. The density functional 

theory provides means of getting accurate estimation of the stable structure and the exact 

pressure when the material undergoes the phase transition. The experimental approach is 

limited to the magnitude of the applied pressure and the nature of the structure that can be 

formed. The degree of stability of the different phases in a solid state is determined by the free 

energy as a function of temperature and pressure or temperature and volume.  

3.3.14 Structural Phase Transition 

 

Phase transition can be expressed in terms of enthalpy as a function of pressure: This 

relationship is given by the equation; 

  𝐻(𝑃) = 𝑈(𝑉, 𝑃) + PV                 

(3.67) 

Where 𝐻 is the enthalpy,  𝑈 is the internal energy, and V is the volume, Gadolinium Barium 

Copper Oxide occurs in orthorhombic and tetragonal phases (Cankurtaran et al., 1990; 

Stolyarova et al., 1992) in which the orthorhombic phase is the most stable. Polymorphic 
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phase transition can occur with increased pressure under which a material changes from one 

step to another (Goryainov et al., 2005; Ma et al., 2009; Wei et al., 2019). Therefore, the 

orthorhombic phase changes to the tetragonal phase at high pressure. The induced stress 

reduced the volume and the lattice parameter for the crystal lattice, resulting in a variation in 

the total energy. The effect on the volume change was attributed to the evolution of the atomic 

positions to their equilibrium position for all the atoms in the crystal. This led to crystal 

deformation by the placement of the particles in their new atomic positions. The relationship 

between the changes in the atomic position vector was established by the equation; 

 𝑅 = 𝑥 + 𝐸𝑅0                   

(3.68) 

The term 𝑥 represents the displacement of a particle within the crystal and 𝐸𝑅0 is the strain 

tensor deformation in its six-component vector. To establish the stability of the two structural 

phases, it was better to do aproper calculation of the Gibbs free energy (G) which is given by 

equation 3.69 (Doan et al., 2020);  

 𝐺 = 𝐸0 + 𝑃𝑉 + 𝑇𝑆                  

(3.69) 

The equation (3.69) above implies that at the structural phase transition, the Gibbs free energy 

is equal to the enthalpy because the computational calculations were carried out at 𝑇 = 0𝐾. 

The minimal computed enthalpy implies the stability of the material (F. Otto et al., 2013; T. 

Zhu & Gao, 2014).  
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The total energy as a function of the reduced volume (V/Vo) is related to pressure by 

Murnaghan’s equation of state (EoS) given by; 

                𝑃 = 1.5𝐵𝑂 [(
𝑉𝑂

𝑉
)

7

3
− (

𝑉𝑂

𝑉
)

5

3
] [1 + 0.75(𝐵𝑂

ʼ − 4)({
𝑉𝑂

𝑉
}

2

3
− 1)]                     

(3.70) 

Where 𝑃 is the applied pressure, 𝑉𝑂 is the volume at zero pressure, 𝑉 is the reduced volume 

upon application of pressure, 𝐵𝑂 is the bulk modulus and 𝐵𝑜
ʼ  is the derivative of the bulk 

modulus with respect to pressure. The ground state energy was then obtained using the energy 

equation 3.71 given below;  

 𝐸(𝑉) = 𝐸𝑜 +
9𝑉𝑜𝐵𝑜

16
{[(

𝑉𝑜

𝑉
)

2

3) − 1]3𝐵𝑜
𝛪 + [(

𝑉𝑜

𝑉
)

2

3 − 1]2(6 − 4(
𝑉𝑜

𝑉
)

2

3]}                 

(3.71) 

The above equations were used to calculate the reduced volume, ground state energy, and 

enthalpy for the material under hydrostatic pressure. 

The electronic density of state was used as the basic quantity in describing the electronic 

structure of the material. The total number of the available state are calculated on the 

assumption that every electron is behaving as a homogenous electron gas. The electronic 

states are then presented in the form of a vector in K-space. 

The energy associated with a single electron in the system is given by; 

 𝐸 =
ђ2

2𝑚
(𝑘𝑥

2 + 𝑘𝑦
2 + 𝑘𝑧

2) =
ђ2

2𝑚
|𝑲|2               

(3.72) 
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This means, for vectors that have the same magnitude, their energy is supposed to be the 

same. As opposed to classical treatment where all energies are allowed, for quantum 

consideration, the uncertainty and Pauli’s exclusion principles are applied to get the discrete 

energy states. This means that the chosen wave functions must satisfy the time independent 

Schrödinger equation in relation to the boundary conditions. DOS is characterized by the 

degeneracy factor in which it is possible for some allowed energy levels; there can be two or 

more combinations of the k-space yielding the same energy. DOS for a crystalline material is 

expressed by the equation; 

𝑔(𝐸) =
2

𝑉𝐵𝑍
∑ ∫𝛿(𝐸 − 𝐸𝑛(𝒌))𝑛 𝑑𝒌                

(3.73) 

Where the integral is over the volume in the reciprocal space covering all the k-points in the 

reciprocal space and 𝑛 represents the band index. Factor two accounst for the spin up and spin 

down in accordance with Pauli’s exclusion principle. The sum is over the bands. 

For a crystalline structure that comprises more than one atom type the contribution of each 

atom to the total density of state can be assessed by considering the projected density of states 

of the atoms and the orbital contribution from each of them. The projected density of state for 

atom ℎ is given by;  

 𝑔𝑙
𝑡(𝐸) =

2

𝑉𝐵𝑍
∑ ∫𝑄𝑙

𝑡𝛿(𝐸 − 𝐸𝑛(𝒌))𝑑𝒌𝑛                 

(3.74) 
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Where 𝑄𝑙
𝑡 is the partial charge of the atom while 𝑙 is the index representing specific orbitals. 

The contribution of each orbital of the projected DOS to the total DOS is established by 

matching the two. Of interest are those which contribute most to the DOS and give the 

characteristic electronic structure for the material. Apart from the DOS, the band structure is 

also used to characterize the electronic structure properties of a material by evaluation of the 

band gap, Fermi level, and the Fermi energy. In a band structure, the energy of electronic state 

is presented along lines (bands) in a reciprocal space obtained from the sampled k-points. 

In this study, the electronic structure properties and the DOS for GdBa2Cu3O7-x were 

calculated using the optimized lattice parameters. The Khon-Sham equations were expanded 

on a plane wave basis set up to a kinetic energy cutoff value of 60Ry by iterative self-

consistent field calculations in a k-grid of 6x6x2. 

3.3.15 Convergence of the PwSCF 

 

The optimized kinetic cutoff energy determines the number of basis sets to be used in an SCF 

calculation. By application of the Bloch theorem in electronic states, the electron wave 

function can be given as by equation; 

 𝜓𝑘(𝑟) = ∑ 𝐶𝑘,𝐺𝑒𝑥𝑝[𝑖(𝑘 + 𝐺). 𝑟]𝐺                     

(3.75) 

Where 𝐺 is the reciprocal vector for the reciprocal space. The kinetic energy for each state is 

given by the equation; 
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         𝐸 =
ђ2

2𝑚
                  

(3.76) 

By truncating the infinite sum in equation 3.72 above, the kinetic energy is related to the 

kinetic cutoff energy by the equation; 

      
ђ2

2𝑚
|𝑘 + 𝐺|2 < 𝐸𝑒𝑐𝑢𝑡                 

(3.77) 

Where the 𝐸𝑒𝑐𝑢𝑡 is the cutoff kinetic energy and the sum takes the form of an equation;  

                              𝜓𝑘(𝑟) = ∑ 𝐶𝑘,𝐺𝑒𝑥𝑝[𝑖(𝑘 + 𝐺). 𝑟]|𝑘+𝐺|<𝐺𝑒𝑐𝑢𝑡
               

(3.78) 

The kinetic cutoff value used for this work was 60 Ry for the orthorhombic phase of the 

GdBa2Cu3O7-x crystalline structure. For convergence to be achieved the real space is related to 

the reciprocal space by equation; 

 
𝛺

(2𝜋)3
∫𝐻(𝑘)𝑑𝑘 =

1

�́�
                 

(3.79) 

Where 𝛺 and �́� represent the volumes in the real space and reciprocal space respectively 

while 𝐼𝐵𝑍 is the irreducible Brillioun zones. For this computational work, the integration of 

the Brillioun zone was done by the use of upshifted the Monkhorst-Pack scheme grid of k-

points 6x6x2. The Monkhorst-Pack scheme grid is popular for DFT computational because it 

has the advantage of giving a uniform set of points expressed by the equation; 
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 𝑘𝑛1,𝑛2,𝑛3 = ∑
2𝑛𝑖−𝑁−1

2𝑁

3
𝑖 𝐺𝑖                 

(3.80) 

Where 𝐺 is a vector representing the reciprocal space and 𝑛𝑖 = 1, 2, …… . . 𝑁. for materials 

without band gap or those with a very narrow band gap, the k-grid becomes discontinuous 

about the Fermi surface and they may make the convergence of the total energy to take more 

time. To solve this problem, we apply the smearing method and for this study we applied the 

Gaussian smearing since the material has a narrow band gap. 

3.3.16  Calculation of the Elastic Constants 

The elastic constant gives information on how a material responds to stress resulting from the 

applied energy in solid materials. The basic law is Hooke’s law which defines the second-

order elastic constants that are generalized to give the third-order elastic constants. The theory 

also addresses the effect of crystal symmetry in characterizing elastic properties. 

The strain is set in such a way that the volume does not change except for the bulk modulus. 

This is because the total energy is determined by volume more than strain and this ensures that 

the two do not contribute to strain. The strain and stress matrix is expressed as: 

       𝜀 =

[
 
 
 𝜀1

𝜀6

2

𝜀5

2
𝜀6

2
𝜀2

𝜀4

2
𝜀5

2

𝜀4

2
𝜀3]

 
 
 

                       

(3.81)      𝜎 = [

𝜎1 𝜎6 𝜎5

𝜎6 𝜎2 𝜎4

𝜎5 𝜎4 𝜎3

]                  

(3.82) 
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The energy change for the strain is given by: 

 𝐸(𝜀1, 𝜀2 ……………𝜀6) = 𝐸𝑜 +
1

2
𝑉 ∑ 𝐶𝑖𝑗𝑖,𝑗=1,6 𝜀𝑖𝜀𝑗 + 𝑍(𝑒3)                

(383) 

Where the energy of the unstrained lattice is 𝑍(𝑒3)  denotes the term proportional to 𝑒𝑘 with 

k≥ 3  and the vector 𝑟 = (𝑥, 𝑦, 𝑧) representing the dimensions of the lattice under strain are 

transformed to 𝑟′ = (𝑥′, 𝑦′, 𝑧′).        

3.3.17 Stress 

When a body is subjected to some external force of a given magnitude, there is a 

corresponding introduction of internal forces within the body that tend to exert force on every 

part of the surrounding, and the body is said to be in a state of stress. Stress is considered to be 

homogenous if the forces acting on the surface of the body together with the orientation of the 

body are not dependent on the position of the particles in the body. 
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Figure 3.3: The Figure represents the force components in a body under stress (Keaton, 

2018).  

 

Figure 3.3 above gives the force components acting on the planes of the body which represent 

the stress components on the body surface. The stress component 𝜎𝑖𝑗 represents the force 

component tending to the direction  +𝑥𝑖 and directed from the face that is normal to +𝑥𝑗. The 

𝜎𝑖𝑖 components form the normal stress component while 𝜎𝑖𝑗 components where 𝜎𝑖𝑗 ≠ 𝑗, form 

the shear stress component on the body. The 𝜎𝑖𝑗 components are of a second-rank tensor and 

thus can be expressed in a 3x3 matrix form; 

 𝜎 = [

𝜎𝑥𝑥 𝜎𝑦𝑥 𝜎𝑧𝑥

𝜎𝑥𝑦 𝜎𝑦𝑦 𝜎𝑧𝑦

𝜎𝑥𝑧 𝜎𝑦𝑧 𝜎𝑧𝑧

]                      

(3.84) 

The positive value for 𝜎𝑖𝑖 infers tensile stress acting on the body while the negative value for 

𝜎𝑖𝑖 infers compressional stress. For the body to acquire the state of equilibrium, the 

infinitesimal volume elements within the body must achieve a state of mechanical stability. 

Meaning the net force acting on each element reduces to zero and this can be expressed as: 

   ∑ 𝜎𝑖𝑗 + 𝑓𝑖 = 03
𝑖=1                   

(3.85) 

Where 𝑓𝑖 is the 𝑖𝑡ℎ componemt of the external force per unit area. Since no net torque will be 

acting on the body at the equilibrium state, the shear components will be related by; 
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  𝜎𝑖𝑗 = 𝜎𝑗𝑖                  

(3.86) 

3.3.18 Strain 

The strain is a property that tells the deformation that the body undergoes due to the applied 

stress. Consider a particle in the body occupying a reference point defined by 𝒓 = ∑ 𝑥𝑖𝑛�̂�
3
𝑖=1 . 

The coordinates are referred to as the Lagrangians of the system. When subjected to stress, a 

particle at point 𝒓 shifts to another position 𝑅 = ∑ 𝑋𝑖𝑛�̂�
3
𝑖=1 . The displacement of the particle is 

defined as 𝑢(𝑟) = 𝑹 − 𝒓. This describes the vector field occupied by a particle in the 

reference configuration. From this perspective, the position of the neighboring particle can 

also be described as 𝒓 + ∆𝒓 and the new positions will be expressed as; 

          𝑹 + ∆𝑹 = 𝒓 + ∆𝒓 + 𝑢(𝒓 + ∆𝒓)                 

(3.87) 

From the above equation, the displacement of the neighboring particle is given by; 

  ∆𝑹 = ∆𝒓 + 𝑢(𝒓 + ∆𝒓) − 𝑢(𝑟)                 

(3.88) 

And the individual component displacement; 

  ∆𝑿𝒊 = ∆𝒙𝒊 + 𝑢𝑖(𝒓 + ∆𝒓) − 𝑢𝑖(𝑟)                 

(3.89) 

If ∆𝒓 in equation 3.82 tends to zero such equation can be written as; 
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𝑢𝑖(𝑟 − ∆𝑟 − 𝑢𝑖(𝑟) ≈ ∑
𝜕𝑢𝑖(𝑟)

𝜕𝑥𝑖

3
𝑗=1 ∆𝑥𝑗                 

(3.90) 

The displacement gradient resulting from the body strain is given by; 

        𝛼𝑖𝑗 =
𝜕𝑢𝑖(𝑟)

𝜕𝑥𝑗
                  

(3.91) 

Each component in the new position becomes; 

 ∆𝑋𝑖 = ∆𝑥𝑖 + ∑ 𝛼𝑖𝑗∆𝑥𝑗
3
𝑗=1                  

(3.92) 

      And  𝑑𝑿 = (1 + 𝛼)𝑑𝒙                

(3.93) 

The above equation implies that the deformed configuration 𝑋 can be established provided the 

reference matrix 𝒙 and 𝜶 are known. If the particle, whose displacement is given by the 

vector, is assumed to be in an infinitesimal neighborhood, then the deformation of the 

resulting configuration can be expressed in terms of the held positions. The square of the 

length 𝑑𝑹 becomes; 

                            |𝑑𝑹|2 = 𝑑𝑹. 𝑑𝑹 = 𝑑𝑿𝟐𝑑𝑿 =  |𝑑𝑟|2 + 𝑑𝑥𝑇2𝜂𝑑𝑥                   

(3.94) 

In which 𝜂 is given by; 
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 𝜂 =
1

2
(𝛼 + 𝛼𝑇𝛼)𝜖                  

(3.95) 

This can also be expressed as; 

 𝜂𝒊𝒋 =
𝟏

𝟐
(𝜶𝒊𝒋 + 𝜶𝒋𝒊 + ∑ 𝛼𝑘𝑗𝛼𝑘𝑗

𝟑
𝒌=𝟏 )                

(3.96) 

The matrix element 𝜂 is the Lagrangian strain matrix and gives a full description of how a 

body undergoes deformation through the displacement of particles from their equilibrium state 

and gives a measure of how the new configuration of the particle differs from the original. 

Homogenous deformation occurs when the Lagrangian strain 𝜼(𝑟) remains constant under 

stress, and this is only achieved when 𝛼𝑖𝑗 remains constant or 𝒖 becomes directly proportional 

with 𝒓. In terms of the symmetric (𝜖) and antisymmetric strain (𝜔) matrix, the Lagrangian 

strain can be expressed as; 

𝜂𝑖𝑗 = 𝜖𝑖𝑗 +
1

2
∑ (𝜖𝑖𝑘𝜖𝑘𝑗

3
𝑘=1 + 𝜖𝑖𝑘𝜔𝑘𝑗 − 𝜔𝑖𝑘𝜖𝑘𝑗 − 𝜔𝑖𝑘𝜔𝑘𝑗)                

(3.97) 

Where 𝛼𝑖𝑗 = 𝜖𝑖𝑗 + 𝜔𝑖𝑗 

From the above equation, it can be inferred that if the magnitude of 𝜖𝑖𝑗 and 𝜔𝑖𝑗 tends to zero, 

the value 𝝐 is a better approximation of 𝜼. If 𝜖 = 0, then 𝛼 = 𝜔 and thus; 𝑑𝑿 = (1 + 𝜔)𝑑𝑥. 

In such a situation, the square of displacement is given as; 
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 |𝑑𝑹|2 = 𝑑𝑥𝑇(𝟏 + 𝝎)𝑇(𝟏 + 𝝎)𝑑𝑇 = 𝑑𝑥2𝑑𝑥 = |𝑑𝑟|2                

(3.98) 

Where 𝜔 is the rotational deformation and does not affect the interparticle distance in the 

deformed body. 𝜖 is the physical strain, and the particle in the body under this strain 

undergoes displacement from their equilibrium configuration. The degree of displacement 

upon deformation is given by the physical strain tensor such that the Lagrangian strain is 

given by; 

𝜂 = 𝜖 +
1

2
𝜖2                  

(3.99) 

Finally, the strain is related to the stress by the Lagrangian stress (𝝉) expressed as; 

                                    𝝉 = det(1 + 𝜖)  (1 + 𝜖)−1. 𝜎. (1 + 𝜖)−1              

(3.100) 

Where 𝜎 is the physical stress. 

3.3.19  Polycrystalline Elastic Properties 

A material is considered to be polycrystalline when it comprises many crystals grains with 

random orientation within a crystal. The bulk modulus 𝐵 and the shear modulus 𝐺 give the 

directional properties for the isotropic crystal. The Young’s modulus 𝐸 and the Poisson’s ratio 

are calculated using the following equations: 
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 𝐵 =
9𝐵𝐺

3𝐵+𝐺
                

(3.101) 

 𝑣 =
3𝐵−2𝐺

2(3𝐵+𝐺)
                

(3.102) 

For accurate calculation of the elastic moduli, averaging methods based on the computed 

elastic constants are used. The methods are: 

3.3.20 The Voigt and Reuss Averaging Method 

Elastic constants describe a crystal lattice that is continuous and periodic without any grain 

boundary in between. Due to the random variation of the grain orientation, a polycrystalline 

solid material may be considered to be isotropic with uniform values of elastic constants in all 

directions. The ability of the material to resist deformation under stress is associated with the 

averages of the bulk and shear moduli. To determine how the stress and strain are distributed 

in a polycrystalline solid, the aggregate average of the Voigt and Reuss are two extreme cases 

are considered: letting the uniform strain in the polycrystalline solid to be equal to the external 

strain (Voigt approximation) and the uniform stress to the equal to the external stress (Reuss 

approximation). 

The Voigt average method operates on the assumption that the strain will remain constant, 

while the Reuss average operates on the assumption that the stress will remain constant during 

deformation. The Voigt averages are based on elastic constants, while the Reuss averages are 

based on elastic compliance. The averages are given by; 
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                                 𝐵𝑉 =
1

9
[(𝐶11 + 𝐶22 + 𝐶33) + (𝐶12 + 𝐶13 + 𝐶123)]                  

(3.103) 

𝐺𝑉 =
1

15
[(𝐶11 + 𝐶22 + 𝐶33) − (𝐶12 + 𝐶13 + 𝐶23) + 3(𝐶44 + 𝐶33 + 𝐶66)]               

(3.104) 

The Reuss averages are given by: 

  𝐵𝑅 = [(𝑆11 + 𝑆22 + 𝑆33) + 2(𝑆12 + 𝑆13 + 𝑆23)]
−1              

(3.105) 

𝐺𝑅 = [15[4(𝑆11 + 𝑆22 + 𝑆33) − (𝑆12 + 𝑆13 + 𝑆23) + 3(𝑆44 + 𝑆55 + 𝑆66)]]
−1

       

(3.106) 

3.3.21 The Hill’s Average 

 

According to Hill, the Voigt and Reuss moduli are upper and lower bound, respectively, hence 

the Bulk and shear moduli can be calculated by using the upper and the lower limits. 

        𝐵𝐻 =
𝐵𝑉+𝐵𝑅

2
                 

(3.107) 

3.3.22 Born Stability Criterion 
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According to the criterion, the softening of the shear moduli causes instability in the crystal 

structure and can lead to distortion. For a crystal at equilibrium, the free energy associated 

with elasticity is given as; 

 𝐸 =
1

2
∑ 𝐶𝑖𝑗𝑒𝑖𝑒𝑗𝑖,𝑗                 

(3.108) 

For a lattice to be stable, the free energy should be positively defined concerning the strains 𝑒𝑖 

and 𝑒𝑗 respectively. The condition for this to be achieved is that the constant elastic matrix 

must be positive. If in the computation of the constant elastic one or more eigenvalues become 

zero the crystal will tend to instability resulting from the lattice distortions to the symmetry of 

the eigenvector. For the simple orthorhombic crystal of GdBa2Cu3O7-x, which has a lower 

symmetry and a relatively high number of the independent elastic constants, the 

diagonalization of the constant elastic matrix gives eigenvalues that satisfy the Born stability 

criteria by the conditions given as; 

 𝐶𝑖𝑖 > 0(𝑖 = 1,4,5,6) > 0,(𝐶22 + 𝐶33 − 2𝐶23) > 0,(𝐶11 + 𝐶22 − 2𝐶12) > 0, 

1

3
(𝐶12 + 𝐶13 + 𝐶23) < 𝐵 <

1

3
(𝐶11 + 𝐶22 +  𝐶33)                                

(3.109) 

From the criteria, it is noticed that the trivial eigenvalues for the matrix C44, C55, and C66 

need to be positive for the criteria to represent a stable crystal condition. 

3.3.23  Lattice Optimization 
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A crystal structure is fully described by the length of the primitive vectors𝑎, 𝑏 and 𝑐 and the 

angles between the primitive vectors𝛼, 𝛽 and𝛾. For proper relaxation of the lattice parameter 

to minimize the ground state energy, different optimization cycles are undertaken in each 

degree of freedom in a systematic sequential way. Every step in the sequence involved 

minimizing the ground state energy to the volume, 
𝑏

𝑎
 and 

𝑐

𝑎
 Ratios and the angles 𝛼, 𝛽 and  𝛾. 

For the volume optimization, the lattice parameters 𝑎, 𝑏, and 𝑐 undergo the same percentage 

degree of distortion. To achieve this, we used the deformation matrix presented as; 

 (

1

√1+𝜖
0 0

0 1 + 𝜖 0

0 0
1

√1+𝜖

)                        

(3.110) 

Where 𝜖 is the physical strain on the body, the volume of the crystal at equilibrium is 

calculated from the least square fit of Birch-Murnaghan’s equation of state: 

 𝐸(𝑉) = 𝐸0 +
9𝑉0𝐵0

16
{[(

𝑉0

𝑉
)

2

3
− 1]

3

�́�0 + [(
𝑉0

𝑉
)

2

3
− 1]

2

[6 − 4 (
𝑉0

𝑉
)

2

3
]}             

(3.111) 

Where 𝐸0, 𝐵0, and �́�0 are the minimum energy, the bulk modulus, and the derivative of the 

bulk modulus for pressure. Optimization of the 
𝑏

𝑎
 the ratio was done in such a way the volume 

of the crystal and the ratio 
𝑐

𝑎
 Remain unchanged.     

To get the equilibrium physical strain, a fourth-order polynomial fit on the energy function 

was done for all the distorted points within the structure. Optimization of the 
𝑐

𝑎
 ratio was 
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achieved by maintaining the volume and  
𝑏

𝑎
 . The ratio was unchanged during the deformation. 

The angle 𝛼 is measured between the length primitive vectors 𝑏 and 𝑐. During the 

optimization process, the volume is maintained unchanged. The deformation matrix used for 

this optimization is given by; 

 (

1

1−𝜖2 0 0

0 1 𝜖
0 𝜖 1

)                

(3.112) 

The equilibrium angle is obtained by the fourth-order polynomial fit on the energy function. 

The angle 𝛽 which is measured between the length primitive vectors 𝑎 and 𝑐 is optimized by 

using the deformation matrix that maintains the volume of the crystal. The matrix is given as; 

 (

1 0 𝜖

0
1

1−𝜖2 0

𝜖 0 1

)                

(3.113) 

The equilibrium angle is obtained by the fourth-order polynomial fit on the energy function. 

The angle 𝛾 is a measure between the length of primitive vectors 𝑏, and 𝑐. The deformation 

matrix used to optimize this angle was (Ravindran et al., 1998);  

 (

1 𝜖 0
𝜖 1 0

0 0
1

1−𝜖2

)                    

(3.114) 
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The fitting procedure was done the same way as for the other parameters to get the 

equilibrium angle. Then, the exact process is repeated until proper equilibrium parameters are 

obtained.  

3.3.24 Computation of the Elastic Constant by the Code 

The calculation of the elastic constant for this work adopted the criterion of a full potential 

linear muffin-tin orbital method and use the exchange correlations; local density 

approximation (LDA) and generalized gradient approximation (GGA) (Ravindran et al., 

1998). Before undertaking the computation, structural optimization for the parameters of the 

simple orthorhombic structure by use of the LDA and the GGA was performed. The initial 

values for optimization were adopted from the experimental values and upon optimization 

there was a good match between the obtained value and the other experimental values. 

Optimization was properly achieved by minimizing the enthalpy of the system. This is done 

by varying the lattice vectors while maintaining the angle and the atomic positions of the 

atoms in the crystal in a fixed position. The equilibrium volume contribution to the total 

energy assumes zero-point movement of the particles and no thermal expansion upon 

application of stress by applying the volume conserving strains. the equilibrium elastic 

constants were calculated from the equilibrium relaxed structure in accordance with the 

volume conserving strains, by allowing the internal degree of freedom through the cell 

relaxation and evaluating the changes in the total energy resulting from the strain in relation to 

its magnitude. After distortion, the crystal was relaxed to achieve an equilibrium state in 

which no force was acting on any atom. The elastic constants were then calculated by 
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variation of strain to the equilibrium position of the lattice parameters. For crystalline solids, 

the change in energy as a result of strain is given by: 

 ∆𝐸 =
𝑉

2
∑ ∑ 𝐶𝑖𝑗𝑒𝑖𝑒𝑗

6
𝑗=1

6
𝑖=1                 

(3.115) 

Where 𝑉 represents the volume of the cell before distortion, ∆𝐸 is the change in energy 

resulting from strain for the vectors 𝑒 = (𝑒1, 𝑒2, 𝑒3, 𝑒4,𝑒5,𝑒6,) and 𝐶𝑖𝑗 is the elastic constant 

matrix.  

 

3.3.25 Elastic Constants of an Orthorhombic Crystal 
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For this crystal structure, the Bravais lattice vector in the form of the lattice parameters is 

given by (Ravindran et al., 1998): 

 𝑅 =
1

2

(

 
 

√3

2

1

2
0

√3

2

1

2
0

0 0
𝑐

𝑎)

 
 

                

(3.116) 

A linear combination of the elastic constant can be determined by straining the vector 𝑅 

according to the relationship: �́� = 𝑅𝐷 in which case, 𝑅 is the matrix containing the lattice 

vectors and  𝐷 is a matrix representing the symmetric distortion of the system. 

The orthorhombic crystal has nine independent elastic constants and therefore, it requires nine 

strains to correspond to the nine distortions. The nine strains correspond to nine distortions 

given below (Ravindran et al., 1998): 

 𝐷1 = (
1 + 𝛿 0 0

0 1 + 𝛿 0
0 0 1

)               

(3.117) 

The energy change associated with this distortion is given by: 

         
∆𝐸

𝑉0
= (𝐶11 + 𝐶12)𝛿

2               

(3.118) 

This type of distortion leads to compression or expansion of the lattice with conservation of 

the symmetry but there is a change in the volume. The second distortion is presented as; 
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 𝐷2 =

(

 
 

1

√1+𝛿
3 0 0

0
1

√1+𝛿
3 0

0 0
1

√1+𝛿
3 )

 
 

               

(3.119) 

This distortion gives symmetry conserving variation of 𝑐/𝑎. The ratio of the energy change to 

volume is given by the equation; 

 
∆𝐸

𝑉0
= (𝜏1 + 𝜏2 + 𝜏3)𝛿 +

1

9
(𝐶11 + 𝐶12 − 4𝐶13 + 2𝐶33)𝛿

2              

(3.120) 

Where 𝜏𝑖 is an element in the stress tensor. 

The third distortion is given by: 

                                                    𝐷3 =

(

 
 

1+𝛿

√1−𝛿23 0 0

0
1−𝛿

√1−𝛿23 0

0 0
1

√1−𝛿23 )

 
 

                        

(3.121)    

The ratio of the energy change to volume for this distortion is given by: 

        
∆𝐸

𝑉0
= (𝜏1 − 𝜏2)𝛿 +

1

9
(𝐶11 − 𝐶12)𝛿

2              

(3.122) 

This type of distortion acts in a way that elongates side 𝑎 of the crystal with proportionality 

that ensures the volume of the crystal is not changed. The equation (3.119), (3.120),  and 
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(3.22) were used to calculate the elastic constants 𝐶11, 𝐶33, and 𝐶33 respectively.  

     

 
∆𝐸

𝑉0
= 𝜏1𝛿 +

𝐶11𝛿2

2
                

(3.123) 

   
∆𝐸

𝑉0
= 𝜏2𝛿 +

𝐶22𝛿2

2
                

(3.124) 

   
∆𝐸

𝑉0
= 𝜏3𝛿 +

𝐶33𝛿2

2
                

(3.125) 

The obtained elastic constants will change the volume of the crystal but still, the crystal will 

remain orthorhombic. To ensure the conservation of volume, volume conserving shear 

distortions 𝐷1, 𝐷2, and 𝐷3 are used to get 𝐶1, 𝐶2, and 𝐶3 respectively. 

 𝐷4 =

(

 
 

1

√1−𝛿23 0 0

0
1

√1−𝛿23

1

√1−𝛿23

0
1

√1−𝛿23

1

√1−𝛿23 )

 
 

               

(3.126) 

 𝐷5 =

(

 
 

1

√1−𝛿23 0
1

√1−𝛿23

0
1

√1−𝛿23 0

1

√1−𝛿23 0
1

√1−𝛿23 )

 
 

                

(3.127) 
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 𝐷6 =

(

 
 

1

√1−𝛿23

1

√1−𝛿23 0

1

√1−𝛿23

1

√1−𝛿23 0

0 0
1

√1−𝛿23 )

 
 

                

(3.128) 

The ratio of change in energy to volume for the distortions 𝐷1, 𝐷2 and 𝐷3are given as: 

 
∆𝐸

𝑉0
= 2𝜏4𝛿 + 2𝐶44𝛿

2                

(3.129) 

 
∆𝐸

𝑉0
= 2𝜏5𝛿 + 2𝐶55𝛿

2                

(3.130) 

 
∆𝐸

𝑉0
= 2𝜏6𝛿 + 2𝐶66𝛿

2                

(3.131) 

𝐷7, 𝐷8 and 𝐷9 are calculated using the volume conserving orthorhombic distortion 

matrices given as:  

 𝐷7 =

(

 
 

1

√1−𝛿23 0 0

0
1

√1−𝛿23

1

√1−𝛿23

0
1

√1−𝛿23

1

√1−𝛿23 )

 
 

                          

(3.132) 

 𝐷8 =

(

 
 

1

√1−𝛿23 0
1

√1−𝛿23

0
1

√1−𝛿23 0

1

√1−𝛿23 0
1

√1−𝛿23 )

 
 

                

(3.133) 
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 𝐷9 =

(

 
 

1

√1−𝛿23

1

√1−𝛿23 0

1

√1−𝛿23

1

√1−𝛿23 0

0 0
1

√1−𝛿23 )

 
 

               

(3.134) 

The 𝐷7 has an effect of increasing 𝑎 and 𝑏 with equal magnitude while 𝑐 remains constant. 

The 𝐷8 the distortion as an effect of increasing and decreasing 𝑐 with an equal amount while 𝑏 

remains constant. The 𝐷9 has an effect of increasing 𝑏 and decreasing 𝑐 with the same 

magnitude while 𝑎 remains constant. The implication of the said behavior is that the collective 

effect of  𝐷7, 𝐷8, and 𝐷9 distortions in a strained crystal is similar the that of a crystal that is 

not strained. 

3.3.26  Bulk Modulus of Crystal 

Considering a single crystal, the independent elastic constants can be used to calculate the 

bulk modulus along the crystallographic axes of a given crystal. Taking the strain normal to 

the stress in a given direction to be the same, then the bulk modulus can be defined by the 

equation: 

                                                 𝐵 =
∆

(1+𝜎+𝛽)2
                              

(3.135)  

Where ∆= 𝐶11 + 2𝐶12𝜎 + 𝐶22𝜎
2 + 2𝐶13𝛽

2 + 2𝐶23𝜎𝛽 

The orthorhombic crystalline structure has the values for 𝜎 and 𝛽 given has  
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                    𝜎 =
(𝐶11−𝐶12)(𝐶33−𝐶13)−(𝐶23−𝐶13)(𝐶11−𝐶13)

(𝐶33−𝐶13)(𝐶22−𝐶12)−(𝐶13−𝐶23)(𝐶12−𝐶23)
               

(3.136)  

 𝛽 =
(𝐶22−𝐶12)(𝐶11−𝐶13)−(𝐶11−𝐶12)(𝐶11−𝐶12)

(𝐶22−𝐶12)(𝐶33−𝐶13)−(𝐶12−𝐶23)(𝐶13−𝐶23)
                      

(3.137) 

The elastic bulk moduli along the 𝑎, 𝑏, and   𝑐 axes of the crystal are given by: 

 𝐵𝑎 = 𝑎
𝑑𝑃

𝑑𝑎
=

Λ

1+𝜃+𝜗
                

(3.138) 

   𝐵𝑏 = 𝑏
𝑑𝑃

𝑑𝑏
=

𝐵𝑎

𝜃
                

(3.139) 

     𝐵𝑐 = 𝑐
𝑑𝑃

𝑑𝑐
=

𝐵𝑎

𝜗
                                      (3.140) 

 𝜃 and 𝜗 represents the directional change of  𝑏 and 𝑐 in relation to 𝑎. 
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CHAPTER FOUR 

RESULTS AND DISCUSSIONS 

4.1 Structural phase Stability of GdBa2Cu3O7-x 

The structural optimization was done on the lattice parameters and atomic positions. The 

parameters that were optimized are the cell dimensions, the kinetic cutoff energy, and the K-

points. The optimized parameters confirmed that GdBa2Cu3O7-x  is a simple orthorhombic 

crystal in a stable state. To assess the stability of the crystal the Goldschmidt tolerance factor 

(𝑡𝑓) was used and is given in equation 4.1 (Article et al., 2015); 

  𝑡𝑓 =

𝑅𝐴1
+𝑅𝐴2
2

+𝑅𝑂

√2(𝑅𝐵+𝑅𝑂)
                   ( 

4.1) 

Where 𝑅𝐴1
 and 𝑅𝐴2

 are the radii for the Gd and Ba occupying site A of the crystal structure. 

For the orthorhombic crystal, the value for a stable structure is supposed to be less than unity 

(𝑡𝑓 < 1). The ionic radii that were used for the calculation were; 1.05 Å, 1.42 Å, 0.73 Å, and 

1.4 Å, for Gd, Ba, Cu, and O respectively. The tolerance factor was found to be 0.8747 which 

means the structure was stable. The equilibrium lattice constant was estimated by fitting a 

curve of volume versus energy to determine the minimum energy with respect to the volume 

of the crystal using the Birch–Murnaghan equation of state (Christensen et al., 2010; 

Jayalakshmi et al., 2005; Mahesh et al., 2013). The total ground state energy as a function of 

volume is presented in Figure 4.1. Figure 4.2 confirms the accuracy of the computation by 
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having the volume at zero pressure same as that in Figure 4.1. The corresponding lattice 

parameters are presented in Table 4.1. The observed decrease in the cell parameters with 

pressure can be explained in terms of reduced compression in the crystal structure as a result 

of repulsion among the atoms. The degree of change of the lattice parameters is not the same 

in all directions because the interatomic distances differ in different directions. 

 

 

 

 

 

 

Figure 

4.1: A fit of the total ground state energy as a function of volume.  
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Figure 4.2: A fit of pressure as a function of volume. 

The minima of the fit of Figure 4.1 gives the ground state energy corresponding to the input 

parameters used in the computation. The ground state energy is ~792.56 Ry and the used cell 

dimensions gave a volume of ~1200(a,u)3. The result of Figure 4.2  is a confirmatory measure 

for the accuracy of the curve plotted in Figure 4.1. Zero pressure coincides with the curve at a 

volume of ~1200(a,u)3. With the confirmation, the crystal structure is deemed to have been 

properly optimized.                                

Table 4.1: The computed lattice parameters under the influence of pressure.  

𝑷(𝑮𝑷𝒂) 𝒂 𝒃 𝒄 

0 7.2611 7.4614 22.7207 

5 7.1770 7.2911 22.4276 

10 7.0843 7.1360 20.7924 

15 7.0620 7.0423 20.4080 

20 7.0075 7.0617 19.9982 

25 6.9214 7.0023 19.5662 

30 6.8933 6.9610 19.2881 

35 6.7625 6.7750 20.2198 

40 6.7076 6.5137 18.2949 

 

The crystal structure of the GdBa2Cu3O7-x  (Figure 4.3) represents a unit cell crystal. Along the 

𝑏 axis of the structure, there exists the CuO ion which is a characteristic feature for all layered 

cuprate superconductors. It is observed that each of the copper iono in the crystal structure is 

surrounded by the oxygen atom. At the center of the CuO2 layer there is  the Gd ion. The BaO 
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ion separates the CuO2 layer, and remains attached to the CuO plane. Table 4.2 represents the 

normalized atomic positions in the unit cell crystal. 

Table 4.2: The normalized atomic positions in the crystal cell.  

Atom     X    Y     Z Atomic 

position 

Gd 0.5 0.5 0.5 Center 

Ba 0.5 0.5 ±0.18 Center 

Cu1 0 0 0 Edge 

Cu2 0 0 ±0.355 Edge 

O1 0 0 ±0.159 Edge 

O2 0.5 0 ±0.378 Face 

O3 0 0.5 ±0.378 Face 

O4 0 0.5 0 Edge 

 

The results from the above table represent the ordering of the atoms and how the bond lengths 

vary in the crystal. The properties of the crystal are determined by the atomic position of each 

of the atoms which vary as indicated in the table.  

From Figure 4.3, Cu1 and O4 combine to form CuO ion while the Cu2, O2, and O3 are 

loosely held to form the two CuO2 planes. The O1 exists inside the crystal and combines with 

Ba to form BaO. Gd remains unattached to any atom in the crystal. The greater contribution of 

the material to superconductivity is basically as a result of the O1 atom. This is because of its 

existence in the vacancy created between the CuO2 planes and the CuO chain. 
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Figure 4.3: The crystal structure of GdBa2Cu3O7-x indicates the bonding of the different 

atoms based on the coordinates of the atoms.  

From the crystals above, the ordering of atoms is the same in the upper and the lower layer of 

the crystal. Upon optimization, the equilibrium lattice parameters were found to be 3.848Å, 

3.948Å, and 11.702Å for 𝑎, 𝑏, and 𝑐 respectively. At zero pressure this compared well with 

the experimental results reported (W. Zhang & Osamura, 1991). 

The fact that the experimental value at zero pressure did not vary so much from the 

computational values qualifies the validity of the computational technique used. Lattice 

parameters were also measured from the output of calculations done at different pressure to 

assess the degree of hardening brought about by the applied hydrostatic pressure. The 

summary of the calculated lattice parameter with respect to varying pressure is given in Table 
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4.1 which were achieved through, relax and variable cell relax calculation within the quantum 

espresso code at different pressure.  

The relationship between 
a

a0
, 

b

b0
, 

𝑐

𝑐0
, and 

V

V0
 in which a0, b0, 𝑐0, and V0 are equilibrium lattice 

parameters and the volume of a relaxed structure under the influence of hydrostatic pressure 

was also computed. The plot for the relationship is shown in Figure 4.4. The decreasing 

variation is in agreement with the previously reported experimental work for other cuprate 

perovskite (Christy et al., 1994; Comodi et al., 1990; Lin et al., 2012).  The side percentage 

contraction of 𝑏 and 𝑐 is greater than that of side, meaning 𝑏 and 𝑐 are easily compressed  and 

their porosity is relatively high than that of side 𝑎  because of the anisotropic nature and 

anisotropic linear compressibility of the HTSC (Fietz & Wuhl, 1990; Sato & Naito, 1997) 
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Figure 4.4:  Variation of volume and cell parameters with pressure (𝐺𝑃𝑎).  
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Site 𝑏 undergoes a small change under the influence of pressure as compared to 𝑎 and 𝑐. The 

percentage change is near ~30%. 

4.2 Structural Phase Transition under Pressure 

It was noted that the ground state energy of the tetragonal phase at zero pressure is high than 

that of the orthorhombic and the reverse happens as the pressure increases. Figure 4.5 and 

Figure 4.6 respectively, imply that the tetragonal phase cannot withstand high pressure and 

hence become unstable as the pressure increases. This is in agreement with the work reported 

by (Noor et al., 2017; Pu et al., 2020). In their study of polymorphic structural phase changes 

under different conditions of pressure, a characteristic small value of ground state energy at 

zero pressure was noted in comparison with the corresponding other phases. And a reverse 

happens at the transition temperature. The same can be confirmed from Figure 4.8, 

immediately after phase transition, in which the calculated enthalpy is the same for the two 

phases, the orthorhombic phase takes a lower value of enthalpy. Meaning the orthorhombic 

phase is the most stable phase than the tetragonal phase. 

The transition pressure is estimated to be at a point in which the minimum energy and volume 

are the same or nearly the same for the two phases as shown in Figure 4.7.  Before and after 

the phase transition, the minimum energy for the two phases is different as shown in Figures 

4.5 and 4.6 respectively. From the DFT calculation in this work, the transition pressure is 

estimated to be 21.95GPa as shown in Figure 4.8, a point at which the enthalpy for the two 

phases is the same. The orthorhombic phase gets compressed beyond the said transition 

pressure, gets distorted, and will not bear its characteristic properties. 
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Figure 4.5: A graph of energy versus volume at zero pressure. 

As shown in Figure 4.5, the plot indicates different values of minimum energy. The difference 

in volume at minimum energy is also more pronounced. 

 

 Figure 4.6: A graph of energy versus volume at 10GPa pressure. 
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It has been shown from Figure 4.6 that there exist different values of minimum energy for the 

two phases but the difference in volume in smaller compared to that at zero. 

 

Figure 4.7: A graph of energy versus volume at 20 GPa pressure.  

It is indicated In Figure 4.7 that the minimum energy for the two phases is nearly the same. 

This is the approximate pressure at which the phase transition occurs. 

 

 Figure 4.8: A graph of enthalpy as a function of pressure. 
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For the superconductors and other materials that undergo structural phase transition, at the 

point of phase transition, the two crystals must have equal free energy (Urry, 2004; Zein et al., 

2010). The state of superconductivity depends on the balance between the two free energies 

and the deviation from the two leads to no superconductivity meaning that superconductivity 

entirely depends on the crystal structure (Bardeen & Stephen, 1964; Klemm & Clem, 1980; 

Lafarge et al., 1993). 

4.3  Electronic Structure Properties  

In terms of electronic structure analysis of materials, semiconducting properties are 

considered as the changes that occur during semiconductor to conductor transition. The 

changes are brought about by the interactions that happen in the occupied states in the band 

and the conduction states (Schabel & Park, 1998; Siebentritt et al., 2010; Xu et al., 2010). The 

definition of the electronic structure depends on the total contribution of the electrons and 

holes in the structure and also the induced effects such as doping. 

4.3.1 Band Structure Calculation 

The band structure was calculated at Γ, X, Z, U, Y, S, T, and R high symmetry points. At zero 

pressure a direct band gap of 0.78eV is formed at around the T symmetry point (Figure 4.9). 

With increasing pressure, the gap closes and the structure undergoes metallization. This 

relates well with what has been reported in studies done on superconducting perovskites under 

different conditions of pressure (Granhed et al., 2020; Noor et al., 2017; Pu et al., 2020). This 

is explained in terms of  the hardening of the crystal lattice with pressure hence affecting the 
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distance between the holes and the electrons in the structure. As a result, there is a columbic 

potential change which triggers a different patterns of motion by the particles.  

 

Figure 4.9: Band structure and the partial density of state at zero pressure.  

The dotted line in the band structure represents the highest occupied state in the valence band. 

The bands structure and the density of state compare well. At zero pressure the single valence 

band which is just below the conduction band is a result of Cu 1d as can be seen in the 

combined graph of PDOS and DOS structure in Figure 4.13. The two bands appearing below 

the band gap are dominated by Ba 2P and Gd 5P. At zero pressure the conduction band is 

empty but dominated by Cu 1d and oxygen O 2P. The Cu 1d and O 2P combine to form the 

Cu-O chain that appears in the undoped structure of GdBa2Cu3O7-x. 

As the pressure increases there is overlapping between the valence band and the conduction 

band which can be attributed to the broadening of the band width of the 1s, 2p and 1d atomic 
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orbital as shown in Figure 4.10. This is because of their strong interaction with neighboring 

 

As observed in Figure 9 at pressure zero, two peaks are formed in the valence and conduction 

band near the Fermi level. This has an influence on the density of state as it makes it have a 

high affinity for oxygen vacancy population at the Fermi energy. This information is 

important in the calculation of the density of state at the Fermi level. The Fermi level 

increases as the pressure increases as observed in other reported work and in Figure 4.11. 

The Fermi energy are 12.432eV, and 19.457eV for zero and 50 GPa applied pressure as 

shown in Figure 4.11 (a) and (b) respectively. The Fermi level increases with increasing 

pressure. The Fermi energy dependence on pressure can be expressed by equation 4.2 (Shan et 

al.,  2013): 

     𝐸𝑔(𝑃) = 𝐸𝑔(0) − 𝛽𝑃                               

(4.2) 

Where β is the pressure coefficient which defines the shift in the position of the valence and 

conduction band with variation in pressure (Óò et al., n.d.).  
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The shift position of the valence and conduction band results in to change in Fermi energy 

which can be expressed as a function of temperature by equation 4.3 (N. Lee et al., 1997). 

   𝐸𝐹(𝑃, 𝑇) =
𝐸𝑔(𝑃)

2
+

3

4
𝐾𝐵𝑇𝑙𝑛

𝑚ℎ
⋆

𝑚𝑒
⋆                                          

(4.3) 

Where EF is the Fermi energy, 𝐸𝑔  the energy gap, 𝐾𝐵 is Bolzmann’s constant, T  is the 

absolute temperature, 𝑚ℎ
⋆   mass of the hole, and 𝑚𝑒

⋆ the mass of an electron.            

 

 

 

 

 

 

 

Figure 4.10: Density of state and band structure for GdBa2Cu3O7 for the pressure of 

0Gpa and 50GPa.  

Figure 4.11: Induced pressure dependence of the Fermi energy.  From the plots a  and 

b represents calculations at done at 0GPa and 50GPa respectively. 

The relationship between the Fermi energy and increasing pressure is shown in Figure 4.11 

Indicate how pressure can lead to a change in the superconductivity transition temperature. 

b a 
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There is a continued increase in Fermi energy with increased pressure provided the structure 

has not undergone distortion.  The direct proportionality of the Fermi energy with pressure 

and temperature results in increased kinetic energy of the particles at high pressure. This is for 

unstrained crystals. For a strained crystal, the behavior is different as seen in Figure 4.12 

where a strain is applied to the structure. When both the strain and the stress are applied to the 

structure, a strained Fermi energy is liberated and a plot of the applied pressure against the 

strained Fermi energy is presented in Figure 4.12. 

 

Figure 4.12: Fermi energy as a function of pressure for a strained crystal of 

GdBa2Cu3O7-x.  

The strain causes instability about the phase transition pressure thus affecting the Fermi 

energy as observed at ~20GPa. The Fermi energy beyond ~20GPa does not describe a stable 
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crystal structure of the material. The change in energy with pressure can be defined by the 

expression (Daoud et al., 2012); 

𝐸𝑖(𝑃) = 𝐸𝑖(𝑜) + 𝐶𝑖𝑃 + 𝐶2𝑃
2              (4.4) 

4.3.2 Density of State and Partial Density of State 

The DOS structure shows a narrow band at -10eV which is dominated by Barium 1s core 

orbitals, followed with barium 2p core orbital at 5eV. The valence bands near the Fermi 

energy range (10-20eV) is a result of CuO ion from copper 1d and O 2p orbitals while the 

conduction band near the Fermi level is dominated by Gd 5p core orbitals which has a greater 

role in defining superconductivity (Sahu et al., 2011) and as indicated in Figure 4.11 and 

figure 4.13 respectively.  

 

Figure 4.13: The band structure and PDOS at zero pressure. 



 144   

   

The partial density of states indicates the elemental and the atomic orbital contribution to the 

valence and conduction band. The figure indicates the orbitals that are predominant around the 

Fermi level. The holes that happen to appear in the CuO2 have a hopping nature which can 

lead to the destruction of the magnetic properties by the removal of the Cu spin and thus the 

magnetic bond with other Cu atoms gets broken.  

4.4 Elastic Properties   

 𝐶𝑖𝑗𝑘𝑙 =
𝜕𝜎𝑖𝑗

𝜕𝜀𝑘𝑙
=

1

𝑉

𝜕2𝐸

𝜕𝜀𝑖𝑗𝜕𝜀𝑘𝑙
                               

(4.5) 
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Figure 4.14: Bulk (B) and Young’s (E) moduli as a function of pressure. 

Young’s  moduli represents the ratio of volumetric stress and strain whereas bulk moduli 

represents the ratio of linear stress to strain. The curves in Figure 4.14 imply direct 

proportionality represented by the equation; 

  3𝐵 (1 −
2

𝑚
) = 𝐸.                    

(4.6) 

The calculated elastic constants Cij shown in Table 4.3 were used to calculate the bulk and 

shear moduli as a function of pressure shown in Table 4.5. The 𝐶𝑖𝑗(𝑖 ≠ 𝑗) determines the 

strength of a material. The choice of using the 𝐶𝑖𝑗(𝑖 ≠ 𝑗) which is calculated using the volume 

conserving orthorhombic distortion is governed by the fact that the balance in energy per 

volume matrices cancels out for the three distortions. Because of that reason, 𝐶𝑖𝑗(𝑖 ≠ 𝑗)  elastic 

constants are the ones that determine the strength of a material (R. Zhang et al., 2015). 

Variation of Pressure and Elastic Moduli

Pressure (GPa)

0 10 20 30 40 50

E
la

s
ti

c
 M

o
d

u
li
 (

G
P

a
)

100

1000

B(GPa)

E(GPa)



 146   

   

Pressure leads to an increase in the elastic constants Table 4.3. The high values of C11, C22, 

and C33 are usually associated with linear compression and the others define the shape of the 

crystal (Fecht et al., 2008). Since the calculated values of the C11, C22, and C33 are higher than 

the others, it means the crystal can withstand deforming stress along the axial than the other 

directions which are to withstand along the other non-axial direction. The trend only happens 

up to ~20GPa. 

Table 4.3: Calculated elastic constants Cij (𝑮𝑷𝒂) of GdBa2Cu3O7-1 under the effect of 

induced pressure up to 25 (𝑮𝑷𝒂).  
 

𝑷(𝑮𝑷𝒂) 𝑪𝟏𝟏 𝑪𝟐𝟐 𝑪𝟑𝟑 𝑪𝟏𝟐 𝑪𝟏𝟑 𝑪𝟐𝟑 𝑪𝟒𝟒 𝑪𝟓𝟓 𝑪𝟔𝟔 

0 125.15 126.73 115.86 80.41 38.22 42.94 39.68 27.84 57.31 

5 180.35 207.34 154.64 89.02 51.61 52.67 48.04 34.97 67.39 

10 225.16 270.89 217.71 115.12 76.63 217.71 53.19 42.09 76.61 

15 256.14 318.62 229.03 132.31 89.83 86.10 57.35 46.87 81.91 

20 87.13 312.79 915.02 4.34 2040.02 2158.10 129.25 774.49 288.13 

25 246.40 304.85 228.11 130.63 89.04 83.61 54.49 42.96 81.38 

30 173.10 607.32 412.77 485.65 388.25 988.85 499.10 19.16 112.05 

35 274.24 436.65 324.89 341.67 231.80 451.34 226.12 40.21 105.34 

40 397.43 503.93 295.85 196.91 143.65 145.01 71.20 64.07 101.37 

 

For 𝐶𝑖𝑖 (𝑖 = 1,2,3,4,5,6) the elastic constant increases with pressure as opposed to 𝐶𝑖𝑗(𝑖 ≠ 𝑗). 

The strength of bonding along different directions also depends on the magnitude of C11, C22, 

and C33 (L. Sun et al., 2017). The elastic constants C11, C22, and C33 are tensile strength along 
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[100], [010], and [001] directions respectively. It is noted that C11>C22 >C33 which means the 

strength of bonding in [100] direction is greater than the others Table 4.3. 

The measure of ductility is determined by the difference in magnitude between the bulk 

modulus and shear modulus (Ravindran et al., 1998; C. Zhang et al., 2020). As indicated in 

Figure 4.14 and Table 4.5, the difference can be noticed and hence the material is considered 

brittle but the ductility gets onset with increasing pressure. The computed values of G and B 

indicate an increase, as the magnitude of pressure increased but the value of B at every 

pressure was higher. This means that the ratio  
𝐺

𝐵
  was less than one (lower) indicating more 

ductility. The ratio is called Pugh’s ratio and is usually used as a criterion for checking brittle 

and the ductile properties of a Material (Pugh, 2016). The critical value which determines 

whether a material is brittle or not is 1.75 (Reynaud et al., 2005). From the values in Table 

4.3, it can be concluded that pressure increases the ductility of GdBa2Cu3CO7-x  up to ~5GPa 

as indicated by the calculated values. 

The Young’s moduli and bulk moduli are also used to calculate the Poison’s ratio  which is 

also a criteria for isotropic material. Inisotropic material should have values ranging from -1 to 

0.5 (Mattrup & Ravn, 2019) . The Poisson’s ration was calculated by: 

              𝑛 =
3𝐺−2𝐵

2(3𝐺+2𝐵)
                 (4.7) 

The calculated values using the equation 4.7 ranged from -0.0616 to 0.3723 which  also 

confirms the  anisotropic nature of the material.   
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𝐶𝑖𝑖 > 0(𝑖 = 1,4,5,6) > 0, (𝐶11 + 𝐶22 − 2𝐶12) > 0, (𝐶11 + 𝐶33 − 2𝐶13) > 0,

(𝐶22 + 𝐶33 − 2𝐶23) > 0,, (𝐶11 + 𝐶22 + 𝐶33 + 2𝐶12 + 2𝐶13 + 2𝐶23) > 0,
1

3
(𝐶12 + 𝐶13 +

𝐶23) < 𝐵 <
1

3
(𝐶11 + 𝐶22 + 𝐶33)                                                         (4.8) 

The computed values derived from the aforementioned equations demonstrate that when the 

substance experiences little isotropic distortion, the stability condition is satisfied. The Voigt-

Reuses-Hill averages (Man & Huang, 2011; Villalobos-Portillo et al., 2019)  were used to 

convert the anisotropic values of the constants to isotropic and then used to calculate the 

transverse, longitudinal, and average sound velocities and they were value used to calculate 

the average sound velocity Table 4.4. The observed increasing trend up to 20 GPa can be 

attributed to increasing stiffness due to pressure and the decrease after 20 GPa is due to the 

phase transition from orthorhombic to tetragonal phase. 
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Table 4.4: The effect of pressure on the longitudinal Bulk velocity 𝐯 − 𝐁(𝐦/𝐬), shear 

velocity (v-G (m/s), and compressional velocity v-E(m/s).  

𝑷(𝑮𝑷𝒂) 𝒗 − 𝑩(𝒎/𝒔) 𝒗 − 𝑬(𝒎/𝒔) 𝒗 − 𝑮(𝒎/𝒔) 

0 4256.82 4256.82 2307.13 

5 4256.88 4256.88 4818.10 

10 4374.88 4374.88 4256.82 

15 3716.58 3716.58 5506.64 

20 1852.41 1852.41 24108.5 

25 4334.80 4334.80 5434.21 

30 6228.24 6228.24 2415.64 

35 5157.21 5157.21 2821.65 

40 4435.89 4435.89 3686.16 

 
 

As indicated in the table above, the increased pressure leads to an increase in the wave 

velocity for this GdBa2Cu3O7-x.  

4.4.1 Elastic Properties at Zero Pressure and High Pressure 

The stable crystal structure at zero pressure is shown in Figure 4.3 after full optimization of 

both the lattice parameters and the atomic position. The values, a, b and c for different 

amounts of induced-pressure that were applied in the calculation of the elastic constant are 

shown in the Table 4.3. At zero pressure they agree well with the ones experimental value 

reported in (Ingosi, 2018). The elastic criteria for stability for an orthorhombic material 

equation 4.6 are also satisfied for the calculated pressure up to 20GPa. The bulk modulus (B) 

tells how the volume gets deformed due to changes in bond length while the shear modulus 

(G) tells how the bond angle will change on application of strain. Under the criteria of 

deformation, there are factors that determine the degree of deformation. The two factors B and 

G (Table 4.5) when applied to calculate the bond angles indicate a drastic drop in bond angle 
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with increasing pressure. This is followed by a very small variation as pressure continues to 

rise and the same trend is observed in Figure 4.15. 

 

Figure 4.15: Change of bond length as a function of pressure. 

It is noted that there is change in large percentage decreased in the -O-Cu-O- bonding up to 

10Gpa.   
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Table 4.5: The calculated bulk modulus (𝐁), shear modulus (𝐆), Young's modulus 

(𝐆), for GdBa2Cu3O7-x.  

 

𝑷(𝑮𝑷𝒂) 𝑩(𝑮𝑷𝒂) 𝑬(𝑮𝑷𝒂) 𝑮(𝑮𝑷𝒂) 

0 75.72 94.46 36.56 

5 103.39 132.69 51.76 

10 136.21 162.20 63.17 

15 155.21 178.04 68.17 

20 289.51 330.17 150.64 

25 151.86 171.32 652.96 

30 233.08 241.56 241.56 

35 976.34 876.21 197.32 

40 1249.7 1226.43 368.62 

 

The values were calculated from the constant Cij (Chen et al., 2019). Table 4.6 present a 

tabulation of values of bond angle as a function of pressure. This means that the elastic moduli 

drops up to around 10GPa and then remains fairly constant for -O-Cu-O- bond. The difference 

in the bond angles indicates that this material is anisotropic in nature a factor that influences 

the determination of superconductivity of the material as discussed in chapter three, under the 

properties of superconductors. The vlues for the bulk modulus (𝐁), shear modulus (𝐄) and 

Young's modulus (𝐆) for GdBa2Cu3O7-x were calculated from the constant Cij (Chen et al., 

2019).  For all the calculated moduli there is an increase in the magnitude of the calculated 

values with increasing values of pressure up to 20GPa (optimally doped) then followed 

inconsnstent values in the over doping regime which represent the unstable tetragonal phase of 

the structure. 
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Table 4.6: Variation of bond angles with pressure. The 𝜽𝟏 and 𝜽𝟐 represent -O-Cu-O- 

and -Cu-Ba-Cu- bond angles respectively. 

 

𝑷(𝑮𝑷𝒂) 𝜽𝟏 𝜽𝟐 

0 71.75 52.18 

5 68.00 53.57 

10 55.64 53.09 

15 55.26 52.56 

20 54.97 52.00 

25 55.30 52.51 

30 54.42 51.08 

35 54.35 52.05 

40 54.23 51.29 

The change in bond angle can be attributed to changes that occur within the inter atomic 

spacing of the material that lead to changes in the shear modulus of the material. Because the 

bond angle of -O-Cu-O- is a weak angle, it undergoes more change in bond length than other 

angles. 

4.4.2 Elastic Anisotropy  

Elastic anisotropy factors give the directional dependency of the elastic properties. The 

directional dependence of the elastic properties find application in so many areas of interest 

(Nam et al., 2020; Vatandoost et al., 2020). Some of these include; response of external stress 

of a crystal, the charges flow on a crystal and mapping of the geophysical fields during the 

exploration. The difference in elastic behavior of the crystal in different directions can be 

attributed to the nature of bonding and atomic orientation. The anisotropic factors considered 

for orthorhombic crystal structure are; A(100) crystallographic factor for < 011 > and <
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010 > shear planes, A(010) cryptographic factor for < 001 > and < 001 > shear planes and 

A(001) crystallographic factor for < 110 > and < 100 > shear planes. A crystal is 

considered to be elastic anisotropic if the value of A(100), A(010) and A(001) are less or 

greater than one. If the value is a unity the crystal is considered to be elastic isotropic. The 

criteria for anisotropic factors given by the following expressions: 

 𝐴(100) =
4(𝐶44)

𝐶11+𝐶33−2𝐶13
                                      

(4.9) 

 𝐴(010) =
4(𝐶55)

𝐶22+𝐶33−2𝐶23
                                      

(4.10) 

 𝐴(001) =
4(𝐶66)

𝐶11+𝐶22−2𝐶12
                             

(4.11) 
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Table 4.7: The variation of the shear anisotropic factors with pressure under different 

planes.  

 

 

 

 

 

 

 𝐴𝐵 =
𝐵𝑉−𝐵

𝐵𝑉−𝐵
                             (4.12) 

𝑃(𝐺𝑃𝑎) 𝐴(100) A(010) 𝐴(001) 

0 0.964453 0.710612 2.517461 

5 0.829098 0.54504 1.285762 

10 0.734643 3.165852 1.152854 

15 0.750876 0.499347 1.056426 

20 0.105340 0.629868 2.945813 

25 0.735280 0.469842 1.122521 

30 0.472600 0.080030 2.34807 

35 0.524200 0.342100 1.342700 

40 0.701512 

 

0.502746 0.798912 
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   𝐴𝐺 =
𝐺𝑉−𝐺𝑅

𝐺𝑉−𝐺𝑅
                   

(4.13) 

𝐴𝐺  and 𝐴𝐵  take values of zero to one. The value of zero means that the crystal is elastic 

isotropic while the value of one means the crystal has the highly anisotropic. The values of 𝐴𝐵 

and 𝐴𝐺with varied pressure are presented in Table 4.8. The values of the factors are highest at 

5GPa. The inconcistances experienced beyond 20GPa are as a result of the unstable tetragonal 

phase of the material. 

The shear velocity only characterizes solid material while the compression wave can also 

characterize the fluids. The shear sound velocity is determined by the shear modulus of the 

material and is not constant in motion. The velocity of the longitudinal is as a result of the 

magnitude of the materials shear modulus, the change in volume due to compression and the 

density of the material. The bulk velocity is as a result of the combination of the two velocities 

and is presented by the formula; 

              𝑐𝐵𝑣 = (𝑐𝑣𝑙
2 −

4

3
𝑣𝑠

2)
2

                         

(4.14) 

  



 156   

   

Table 4.8: Values of percentage of anisotropy in the compressibility AB and the shear 

moduli AG. The highest values for both are recorded at 5GPa. 

 

𝑃(𝐺𝑃𝑎) 𝐴𝐵 𝐴𝐺  

0 0.013744 0.054422 

5 0.664961 0.32819 

10 0.019874 0.030536 

15 0.016735 0.031966 

20 0.015210 0.03342 

25 0.014053 0.035574 

30 0.014053 0.039821 

40 0.391520 4.53753 

 

The trend in the Table 4.9 can be explained on the basis of wave scattering theory in which 

pressure is assumed to reduce the porosity of the crystal thus leading to high sound velocity. 

High sound velocity in a crystal increases with increase in the elastic moduli (Fan et al., 2019; 

Liu et al., 2009). This effect on the ceramic perovskite is aided by the interatomic forces that 

are associated with the high temperature superconductors. In this superconductor the reduction 

in the volume due to pressure can be attributed to the increase of the copper valence due to the 

hoping oxygen. The increase of the copper valence leads to decreased ionic radius of the 

copper ions hence the crystal hardens by reduction of volume which favors the sound velocity. 

The anisotropic factor is determined by bonding along a given plane between nearest atoms is 

strong (Bouhadda et al., 2013). For this case, it means that there is strong bonding of atoms in 

the <001> shear plane. 
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Figure 4.16: The shear anisotropic factor as a function of pressure the GdBa2Cu3O7-x. 

Table 9: A table of shear anisotropic factors with varied pressure up to 40GPa.  

𝑷(𝑮𝑷𝒂) 𝑨(𝟏𝟎𝟎) A(𝟎𝟏𝟎) 𝑨(𝟎𝟎𝟏) 

0 0.964453 0.710612 2.517461 

5 0.829098 0.545040 1.285762 

10 0.734643 3.165852 1.152854 

15 0.750876 0.499347 1.056426 

20 0.105340 0.629868 2.945813 

25 0.735280 0.469842 1.122521 

30 0.472600 0.080030 2.348070 

35 0.524200 0.342100 1.342700 

40 0.701512 

 

0.502746 0.798910 

For this superconductor the non-porous regime gives good relationship between the elastic 

moduli and the hydrostatic pressure (Dodd et al., 2003; Mech et al., 1989). The increased non 

porosity which hardens the crystal with increased pressure is related by the equation; 

              𝐸 = 𝐸0(1 − 1.9𝑃 + 𝑃2)                           

(4.15) 
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In which 𝐸 represents the elastic moduli and 𝐸0 represents the elastic moduli of the crystal 

with reduced porosity and 𝑃  is the fractional change in volume. The the relationship between 

the elastic modulus at zero pressure (𝐵0) and that at elevated pressure 𝐵(𝑃) is given by the 

relationship; 

              𝐵(𝑃) = 𝐵0 +
𝜕𝐵

𝜕𝑃
𝑃                  

(4.16) 

The result obtained at zero pressure is in good agreement with the experimental result reported 

of 84.6 GPa for bulk modulus at zero pressure (Almond et al., 1989).   

The study of the sound velocity and associated attenuation is key in the different application 

of superconductors. This is attributed by the fact that most superconductors undergo 

polymorphic structural phase transition as presented in Figures 4.17. For Gd Ba2Cu3O7-x, 

changes in the elastic moduli sound velocity is in most cases can be an indicator of phase 

transition and this affects the superconducting transition temperature. This can be seen in 

Table 4.8 in which there is an abrupt change in elastic moduli sound velocity near the 

structural phase transition and in Figure 4.16. The relationship for this transition and the 

elastic moduli can be presented as. 

              𝐵𝑛 − 𝐵𝑠 =
𝐵𝑛

2

4𝜋
(
𝜕𝐻𝑐

𝜕𝑃
)
2

                                          

(4.17) 

Where 𝐵𝑛 and 𝐵𝑠 are the normal bulk moduli the normal and the superconducting phases 

respectively, 𝐻𝑐 is the thermodynamic critical field and 𝑃 is the pressure. As indicated, the 
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elastic moduli in the superconducting phase which is below ~21.9GPa is lower the non-

superconducting tetragonal phase. The equation 4.15 applies for all the moduli of elasticity.  

 

     Figure 4.17: Lattice velocities as a function of pressure for the GdBa2Cu3O7-x.  

The lattice velocities in the Figure 4.17 indicate a drastic change at ~20GPa implying 

polymorphic phase transition for the structure at that induced pressure. 

4.4.3 Cauchy Pressure 

The Cauchy pressure gives a better description of the interatomic bonding that defines the 

characteristic of a material resulting from the nature of bonding at atomic level. For an 

orthorhombic structure 𝐶12 − 𝐶66 > 0, 𝐶13 − 𝐶55 > 0 and 𝐶23 − 𝐶44 > 0 implies the atomic 

bonding is metallic in nature while 𝐶12 − 𝐶66 < 0, 𝐶13 − 𝐶55 < 0 and 𝐶23 − 𝐶44 < 0 are 

majorly associated with the directional properties. For the large absolute values, the crystal is 

assumed to have strong metallic bonding and directional properties. The calculated values of 

the Cauchy pressure show that the maximum values of absolute Cauchy pressure are observed 
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at a pressure of 20GPa Figure 4.18. This indicates the strongest bonding is of the metallic 

kind. The increasing values of the Cauchy pressure with pressure means increased 

metallization with increased pressure. The inconsistencies in the values of the Cauchy 

pressure after the maximum values indicates instability if the bonding and this can be 

attributed to the phase transition phenomenon which occurs slightly above ~20GPa. 

              

Figure 4.18: Cauchy pressure as a function of pressure.. 

The positive Cauchy pressure signifies ductility of a structure while the negative value 

signifies the brittleness of the structure. Since at low pressure the material has a positive value, 

then it means the criteria can  not be relied on for the assessment of the ability of the material 

to resist fracture as explained in chapter two. 

4.4.4 Hardness of a Material 

Cauchy Pressure

Pressure (GPa)

0 10 20 30 40 50

C
a
u

c
h

y
 P

re
s
s
u

re
(G

P
a

)

-150

-100

-50

0

50

100

150

Cauchy Pressure



 161   

   

The strength of a material can be considered in terms of hardness and the yield strength. 

Hardness is an intrinsic behavior that tells how a material will resist deformation from the 

applied force. Yield strength tells the ability of a material to resist plastic deformation. The 

hardness of the crystal in the study was calculated using the Vickers hardness model which is 

expressed as; 

  𝐻𝑣 = 2(𝑘2𝐺)0.585 − 3                  

(4.18) 

Where k =
𝐺

𝐵
 , G is a shear modulus and  Hv vicker hardness of the material. The yield 

strength is expressed as σy =
Hv

3
. Both the values of the Vicker hardness and the Yield 

strength increases up the value of 15GPa and then decrease drastically Figure (4.19). This 

means that ability of this material to resist deformation at low pressure and elevated pressure 

is low as compared to the pressure of 15GPa. Maximum hardness is experienced at the 

pressure of 15GPa. Materials which have high yield strength in most cases are likely to be 

brittle and from Figure 4.19 it can be confirmed at the optimal pressure for the two properties 

are high for the GdBa2Cu3O7-1 perovskite material. This means that in straining the material to 

the optimum level of yield strength, the material deforms in a brittle manner. When compared 

with other ceramic materials it is observed that the values reported in this study are high and 

hence the ability of this material to resist dislocation on the application of stress is confirmed. 

The hardness of a crystal relates to how bonds hold the atoms and the degree of hardness 

when pressure is applied depends on the ability of the material to resist disorientation of the 

atoms from their bonded positions. The GdBa2Cu3O7-x which is a ceramic material is 
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characterized by covalent bonds which form the intrinsic perspective of the crystal structure 

and are directional. The tendency of the bonds to be directionally rigid prevents dislocation 

from having a smooth slide because it will involve a lot of distortions. The observed hardness 

at that relatively higher pressure of 15GPa can thus be associated with the inability to move 

the dislocations in the crystal lattice. 

 

 

Figure 4.19: Material strength as a function of pressure for the GdBa2Cu3O7-x.. 

 The low value of the yield strength implies that the material can undergo plastic deformation 

with small applied stress which confirms the ductile nature of the material. On the other hand 

the high value of Vickers hardness confirm that if a thin piece of the material is subjected to 

stress, it can withstand to high magnitude of pressure. At phase transition the values take 

minimum value. 
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4.4.5 Pugh’s Criterion  

The criterion is used to assess whether the material is ductile or brittle. According to the 

criterion, a material is considered brittle if Pugh’s ratio is less than 1.75 and ductile if Pugh’s 

ratio is greater than 1.75. The calculated values indicate that at low pressure the material 

portrays a relatively high level of ductility as inferred from the values in Figure 4.20. This can 

be explained in terms of reduction of the stress arising from low pressure since at low pressure 

the stress is usually low.  

 

Figure 4.20: Pugh’s ratio as a function of pressure for the GdBa2Cu3O7-x..  

The Figure 4.20 indicates that the ratio which is a coefficient of the bulk and shear modulus 

illustrates the pressure dependence of the material to plastic deformation. Ductile behavior is 
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observed in the material at low pressure ~5GPa. With increased pressure the material become 

brittle with the Pugh’s ratio greater than 1.75. 

4.4.6 Energy Factor K 

The energy factor 𝐾 can be used to estimate the plasticity of a crystalline material in relation 

to dislocation under stress. The dislocation in a crystalline material can occur in two ways: 

edge dislocation and screw dislocation. In the edge dislocation an extra half plane of atoms is 

shifted at the middle of the crystal and as a result it disorients the nearby planes of atoms. 

Screw dislocation is usually produced by tearing the crystal along a plane that is parallel to the 

slip direction. Plastic deformation on the crystalline structure is aided by the degree of crystal 

dislocations. These dislocations which appear in a crystalline structure as distortions interfere 

with the atomic arrangement and introduce stress in the system. The calculated result indicates 

an increase of the factor up to ~90 at 15GPa for K-screw and ~60 at 20GPa for K-edge Figure 

4.21. This is true as the literature value relates the two by the expression Escrew = 0.66Eedge. 

The energy of dislocation is as a result of the elastic component of the strained bonds within 

an elastic material. This elastic component of energy depends on the crystal size. 
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Variation of Energy Factor
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      Figure 4.21: Energy factor as a function of pressure for GdBa2Cu3O7-x.. 

4.4.7 Debye Temperature 

 Θ𝐷 =
ℎ

𝑘
[
3𝑛

4𝜋
 
𝑁𝐴𝜌

𝑀
]

−1

3
𝑣𝑚                                     

(4.19)  
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 𝑣𝑚 =
1

3
[

2

𝑣𝑡
3 +

1

𝑣𝑙
3]

−1

3
                                

(4.20)                               

 

The Debye temperature increased from 409.00K to 850K as pressure increased from 0GPa to 

20GPa. This increase is because of the phase transition to non- superconducting tetragonal 

phase of the material. The high value of the Debye temperature means that phonon coupling 

constant is strong. From Table 4.10, it is also noted that Fermi energy increases with increase 

in Debye energy. The electron density at the Fermi level is given by: 

  𝑛𝑒 = 𝑁𝑒𝑒
𝐸𝐹−𝐸𝑔

𝑘                                              

(4.21) 

The equation implies that increase of the electron density mean an increase in the Fermi 

energy and that leads to an increase of the Debye temperature. The equation 4.20 above is 

related to the definition of Debye temperature in equation 4.16. 
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Figure 4:22: Debye temperature as a function pressure. The maximum Debye 

temperature is achieved at ~20GPa. 

4.4.8 Superconductivity Transition Temperature Under Pressure 

Cuprate superconductors undergo doping on the condition that holes must be populated in the 

CuO2 layers as suggested by the BCS theory and the Mc Millan’s equation. like other cuprates 

GdBa2Cu3O7-x, the hole concentration can be varied by reducing the oxygen concentraton 

represented by x in the formular or by inducing pressure on the crystal structure. The effect of 

external pressure to the crystal is that it varies the concentration of charges near the Fermi 

level of the crystal lattice which leads to modification of the electronic structure of the crystal. 

In this cuprates superconductivity is brought about by two factors namely; doping effect and 

polar ionic. The combination of the two effects enhences the population of the hoping oxygen 
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between the upper and lower layer of the crystal and thus results to increased 

superconductivity and hence the superconductivity transition temperature TC. The Table 4.10 

represents the superconductivity transtion temperature resulting from pressure induced 

doping. It is observerved that the underdoping legime leads to increase in superconductivity 

transtion temperature while the overdoping legime leads to decrease in the superconductivity 

transtion temperature. As explained by the BCS theory, the tanstion from normal state to the 

state of superconderctivity is attributed to an interaction between the charge carrier, electrons 

and holes. For the cuprate high temperature superconductor it is the holes that contribute to 

the superconductivity. The pairing of the charge carriers leads to the smooth flow that results 

in the superconducting ground state. The temperature dependence conductivity is brought 

about by the crystal lattice vibration modes under normal state. Above the superconductivity 

transition temperature enhanced electron-phonon interaction leads to high electrical resistivity 

but strong pairing occurs at or below the superconductivity transition temperature. 

The holes then happen to appear in the CuO2 have the hopping nature which can lead to 

destruction of the magnetic properties by the removal of the Cu spin and thus the magnetic 

bond with other Cu atoms get broken. Upon doping the superconductivity state emerge for the 

destroyed antiferromagnetic state which favor superconductivity.  The study  adopted the 

electron phonon coupling constant of 𝜆 = 3.9 (Philip B Allen, 2000). 
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Table 4.10: The table represents values for the calculated Fermi energy (EF), Debye 

Temperature (𝚯𝐃), Average sound velocity (Vm) and the superconductivity transition 

temperature (TC) for GdBa2Cu3O7-x. 

 

 

 

 

 

 

The values for the Table 4.10 were calculated from the moduli in table 4.2. Under   doping 

starts at 𝐓𝐂=67.92K. 
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Figure 4.23: The graph represents plot of TC against pressure. 

𝑷(𝑮𝑷𝒂) 𝑬𝑭 𝜣𝑫(𝑲) 𝒗𝒎(𝑴/𝒔 𝑻𝒄(𝑲) 

0 9.55 409.00 2551.76 67.92 

5 9.85 463.11 2939.09 77.08 
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The relationship between the hole population as a result of induced pressure and the normal to 

superconducting state for all the cuprates superconductors including  GdBa2Cu3O7-x are 

described by the inverted parabola equation 4.21 (Wejgaard, 1969): 

3.4  𝑻𝑪 = 𝑻𝑪(𝐦𝐚𝐱) [𝟏 − 𝑩(𝒏𝒐𝒑 − 𝒏)
𝟐
]                             ( 4.22) 

Where nop is the crystal’s hole concentration in which the TC attains its maximum value 

TC(max) (Figure 4.23). The constant B = (nop − nmin)
−2

, where nmin is the minimum hole 

concentration which marks the onset of superconductivity. Equation 4.22 can be modified to 

include condtions of superconderctivity transition temperature  under pressure as (Wejgaard, 

1969); 

 𝑇𝐶(𝑃) = 𝑇𝐶(max)(𝑃) [1 − 𝐵(𝑛𝑜𝑝 − 𝑛(𝑃))
2
]                         

(4.23) 

Where TC(P), TC(max)(P) and n(P) are calculated at a given pressure (P). The model works 

on the assumption  that nop and  B do not depend on pressure. Assuming   TC(op)(P) to be 

pressure dependent TC  when the crystal has maximum hole concentration then equation 4.22 

can be written as:  
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 𝑇𝐶(𝑃) =
𝑇𝐶(𝑜𝑝)(𝑃)[1−𝐵(𝑛𝑜𝑝−𝑛(𝑃))

2
]

[1−𝐵(𝑛𝑜𝑝−𝑛𝑜𝑝(𝑃))
2
]

                

(4.24) 

Equation 4.23 is a representation of the superconductivity transition tempetrature when the 

induced pressure is within the underdoping regime. With increasing pressure n(P) shift 

towards nop  leading to optimal doping with the TC taking a mximum value. In this work the 

induced pressure that resulted to maximum TC was approximated to be at 20GPa (Table 10). 

The increase of TC (Table 4.10) resulting from induced pressure up maximaun TC can be 

explained in terms of the population of charge carriers in the CuO2 Planes of GdBa2Cu3O7- 

which is a common characteristic for all cuprate superconductors (Ambrosch-Draxl et al., 

2004). Therefore it means that the oxygen located at the center of the cuprate moves to CuO2 

under the influence of the induced pressure and the superconductivity transition temperature is 

associated with the minimum buckling angle of CuO2. The over doping limit indicated in 

Table 4.10 is a result of population of charge carriers near the Fermi level and the over doping 

limit is marked by maximum Fermi energy. The the computed values of TC show that the 

material’s superconductivity properties vary with pressure but good high temperature 

superconducvity is achieved at a pressure of approximately 20GPa. The good 

superconductivity behavior is also supported by the computed high values for the Debye 

temperature (Cocisnunications, 1980). When a material potrays better TC , it implies that the 

material is stable (Barns & Laudise, 1987; Klose & Hertel, 1970) and this is illustrated in the 

stability criterion (equation 4.7) from the elastic constant. Above 25GPa tha material shifts to 
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unstable superconducting phase (tetragonal phase) and that can explain the inconsistence 

observed of TC observed above that value. 
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Figure 4. 24: A graph of hole concentration for the GdBa2Cu3O7-x as a function of TC by 

varying the value of x by means of super cell. 
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explained in terms of hole pairing as the value increases  to optimum level. Further increase 

results to unpairing thus reducing the superconductivity transition temperature.   
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

In this chapter we present the summary of the study of this work along with the 

recommendations for future work to be done. The structural, electronic structure, elastic 

properties and superconductivity for the layered GdBa2Cu3O7-x  perovskite material have been 

studied based on their potential application  in many field. 

5.1 Conclusion  

So far the cuprate superconductors remain to be the ones that exhibit high temperature 

superconductivity as compared to other superconducting materials. The ability to undertake 

them through chemical substitution and other forms of doping ( hole and electron) makes 

them even more better for application. The uniqueness of these superconductors lies on the 

presence of the CuO2 plane which takes responsibility in giving the material the 

superconductivity behavior.  The influence of the CuO2 plane is based on the interaction of the 

4s-3d orbitals which is as a result of their pairing of localized ions in the copper ion. For 

maximum hybridization to be realized in the s-d orbitals the conduction band has to be 

hybridized with the oxygen 2p orbitals. By considering the electronic configuration of 

elements, the three levels namely;  3d, 4s, 2p are close to each other. Furthermore by 

considering the 4s orbital for the cuprates it so much correlates to the superconductivity 

transition temperature. This is strongly related to the partial density of state PDOS results 

report in this work. 
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In order to understand the structural stability of the material, structural optimization was 

carried out with respect to the all lattice parameters and the atomic positions using the plane 

wave self-consistence field calculations (PWSCF). As indicated in chapter IV, the lattice 

parameters and the atonic position show that the GdBa2Cu3O7-x has a orthorhombic symmetry 

with space group Pmmm. The stability was verified using the Goldschmidt tolerance factor 

(𝑓𝑡) the indicated values in chapter IV show that the material is stable at ground state. Even 

though the calculated value nears unity indicating stability, by application of pressure the 

orthorhombic symmetry loses stability and undergoes a polymorphic phase transition to the 

tetragonal phases at the indicated transition pressure. 

In order to study the ground state properties of the material, the molecular volume was varied 

and the calculated energies plotted with the Birch–Murnaghan equation of state The obtained 

equilibrium lattice parameters, the bulk modulus (𝐵𝑜) and pressure derivative of bulk modulus 

(𝐵') are computed from the calculated ground state energies. The calculated lattice parameters 

for the material are in good agreement with the experimental results.  

The phase transition pressure and metallization with increase in pressure is illustrated. The 

material undergoes polymorphic phase transition under the influence of pressure to change 

from orthorhombic to tetragonal phases. 

The plotted band structure from the bands calculation indicates the material has a direct band 

gap at the T high symmetry point of the brillouin sampling. The calculated band gap in good 

agreement with the available experimental data but slightly underestimated. The 

underestimation can be attributed to the use of the local density approximation (LDA) and the 

generalized gradient approximation (GGA) functional pseudopotentials which are known to 
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underestimate the computed band gap. For better understanding of the electronic band 

structure of the material, further, the total density of states (DOS) was also computed. The 

partial density of state (PDO) calculation for this material indicates that the conduction band is 

dominated by the Gd 5p while the valence band near the Fermi level is dominated by the CuO 

from the Cu 1d and O 2p. 

The elastic constant properties of the GdBa2Cu3O7-x for the orthorhombic phase were studied 

by the use of density functional theory (DFT) computational method. A whole set of elastic 

constants for the material was solved from the quadratic relation between the crystal strain and 

energy. The local density approximation (LDA) and the generalized gradient approximation 

(GGA) exchange gave exchange correlation functional gave a close results to the experimental 

results. By application of the Voigt-Reuss-Hill approximation, the elastic moduli of the 

material such as the Young, bulk and shear modulus were calculated based on the obtained 

elastic constant of the material. In comparison with the experimental result the computational 

methods work better especially when the application is on a single crystal structure at high 

pressure.  

The elastic anisotropy which is a factor associated which superconductivity is illustrated by 

the anisotropic factors for the orthorhombic crystal material. The anisotropic factors were 

found to vary with pressure with the highest factors recorded at the pressure of zero. The 

variation of the factor away from one with increased pressure indicated that anisotropy 

increased with increase in pressure. From such result it can be inferred that the 

superconductivity increased with pressure which conforms to the theory. This is also 

supported with the results of the shear anisotropic factors in different planes which indicate a 
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drop on the factors for the pressure range of 1GPa to 20Gpa. The material hardness test show 

that the material is relatively ductile at lower pressure and tends to brittleness with increased 

pressure. 

 

5.2 Recommendation  

More emphasis in this work has been given to the superconducting properties of the 

GdBa2Cu3O7-x perovskite material for application. We are recommending the study of other 

properties of interest such as the magnetic and optical properties in the influence of the 

superconderctivity transition temperature. This should include  MBa2Cu3O7-x (M=other rare 

earth metal) where the various rare earth metal are likely to give varied properties. We also 

recommend an intense study of the unstable tetragonal phase which is a polymorph 

GdBa2Cu3O7-1 of this material with the intention of finding possible ways that will improve its 

properties for application under different conditions. The is very important because it as been 

seen by changing the structure of a material under different condition it can result to new and 

improved properties which are essential for both industrial and other applications. 
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Experimental studies on the suggested areas should also be considered as a way of 

supplementing the results obtained from the computational studies. 
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APPENDICES 

APPENDIX I: 1.1  The Quantum Espresso Code 

This is an open source full ab intio package for implementing electronic structure and energy 

calculations. The package uses the plane wave self-consistent field (PWSCF) code with 

pseudo potential within the framework of the density functional theory (DFT). Using the code 

for the first principal calculations, it is necessary to ensure convergence of the energy cutoff 

which ensure proper wave function expansion and also proper choice of the k-points which 

gives a measure of how best  the grid as given approximation to the continuous integral 
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APPENDIX II 

 

1.1 Steps in Band Structure Calculation 

 

When using the plane wave self-consistence and the pseudo potential method you involve four 

main steps namely; relax, scf, nscf (in which a denser grid of k-points is required), the 

calculation of the bands and post processing in using the bands.x calculation. In this work the 

plotting of the bands was done using the grace plotting software. The steps are as follows: 

 

1.2  Relax Calculation 

This is the first step and is meant to allow the atoms take their desired position. The input file 

for the relax should be: 

(1)     &control 

(2)     pseudo_dir  = './  

(3)      calculation = 'relax', ‘ 

(4)       prefix = 'Gab',  

(5)       restart_mode='from_scratch', 

(6)       tstress =.true., 

(7)       tprnfor =.true., 

 / 

(8)       &system 

(9)       ibrav=  8, 

(10) celldm(1)=    7.26188, 

(11) celldm(2)=    1.0274852581, 

(12) celldm(3)=    3.0451687357, 

(13)  nat =  98, 

(14)   ntyp = 4, 

(15)   ecutwfc = 60.0, 

(16)   ecutrho = 480.0, 

 / 

(17)  &electrons 

(18)   mixing_beta = 0.2 

(19)  conv_thr =1.0d-2 

  / 
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(20) &ions 

(21) ion_dynamics='damp', 

/ 

(22) &cell 

(23) press=0.0 

/ 

(24) ATOMIC_SPECIES 

 

 APPENDIX I CONT………… 

 

Gd  157.25  Gd.pbe-spdn-rrkjus_psl.1.0.0.UPF 

Ba  137.327 Ba.pbe-nsp-van.UPF 

   Cu  63.546 Cu.pbe-d-rrkjus.UPF 

   O   15.9994 O.pbe-van_bm.UPF 

 

(25) ATOMIC_POSITIONS (crystal) 

Ba       0.500000000   0.500000000   0.180760126 

Ba       0.500000000   0.500000000   0.819239874 

Gd       0.500000000   0.500000000   0.500000000 

Cu       0.000000000   0.000000000   0.656717737 

Cu       0.000000000   0.000000000   0.343282263 

Cu       0.000000000   0.000000000   0.000000000 

O        0.000000000   0.000000000   0.834403347 

O        0.000000000   0.000000000   0.165596653 

O        0.000000000   0.500000000   0.619777593 

O        0.000000000   0.500000000   0.380222407 

O        0.500000000   0.000000000   0.621973247 

O        0.500000000   0.000000000   0.378026753 

O        0.000000000   0.500000000   0.000000000 

 

  

(26) K_POINTS automatic 

6 6 2 1 1 1 

 

The lines number are explained as follows; 

 

(1)  &control: Indicates the control block where general information that will guide 

the computational process without special parameters related to the material are 

located 

(2)  pseudo_dir  = './ : Directs the code to where the Pseudo potentials are kept and 

in this case they are kept within the directory containing the script to guide the 

calculation. 

(3)      Calculation = 'relax', ‘: Directs the the plane wave self-consistent (PWSCF) 

the      calculation to be performed. 
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(4)  Prefix = 'Gab', : Indicates the filename prefix that will be used for temporary 

files from which any information needed for other calculation will be fetched. 

(5)  Restart_mode='from_scratch',: indicates that the code will be generating a new 

structure 

(6)  tstress =.true.,: Is a flag for calculation of stresses. If false, the code will not 

compute the stresses. 

(7) tprnfor = .true.: Is a flag for calculation of forces. If false, the code will not 

compute the forces. 

(8)  /: Indicates the end of the block 

(9)       &system 

(10)    ibrav=  8, 

(11) celldm(1)=    7.26188, 

(12)  celldm(2)=    1.0274852581, 

(13)  celldm(3)=    3.0451687357, 

(14)  nat =  98, 

(15)   ntyp = 4, 

(16)   ecutwfc = 60.0, 

(17)   ecutrho = 480.0, 

 / 

 Line 9-17: is the block ibrave for the crystal system. The      ibrav=  8, 

Is a simple orthorhombic structure. The ibrav is important in the calculation because it defines 

the symmetry of the structure which then can reduce the number of calculation to be done to 

achieve the ground state conditions and thus reduce the computation time. The celldm defines 

the dimensions of the structure and for this calculation the values were given in atomic units, 

or bohrs. For the orthorhombic structure, 𝑎 ≠ 𝑏 ≠ 𝑐. Nat-represents the total number of atoms 

in the structure and for the GdBa2Cu3O7-x, it has 13 atoms. Ntyp – represents the number of 

the types of atoms and the structure has 4 atom types. Ecutwfc – is the Kinetic energy cutoff 

value for the pseudo-potentials.  

/ 

(18) &electrons 

(19)   mixing beta = 0.2 

(20)  conv_thr =1.0d-2 
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Line 18-19 is the electron block. conv_thr =1.0d-2- refers to the minimum energy 

difference between different cycles that should be achieved before convergence. 

  / 

(21) &ions 

(22) ion dynamics='damp', 

/ 

Line 21-22 represents the ion dynamic block. Depending on the type of calculation different 

possibilities and different default values can apply. Ion dynamics='damp',- is specifically used 

for structural relaxation calculations in which the optimization is considered to be constrained. 

(23) &cell 

(24) press=0.0 

/ 

Line 23-24, defines the dynamics for the cell and different possibilities are allowed depending 

on the type of calculation the is being undertaken. Press- means the target pressure for the 

calculation in KBars. Press=0.0 means that the calculation will run at zero pressure. Other 

values can apply if the calculation is to be run at higher pressure. 

(25) ATOMIC_SPECIES 

   Gd 157.25  Gd.pbe-spdn-rrkjus_psl.1.0.0.UPF 

Ba 137.327 Ba.pbe-nsp-van.UPF 

   Cu 63.546 Cu.pbe-d-rrkjus.UPF 

   O   15.9994 O.pbe-van_bm.UPF 
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Line 25 declares the atomic species in the structure. The masses and the pseudo potentials 

used are also included in the block 

(26) ATOMIC_POSITIONS (crystal) 

Ba       0.500000000   0.500000000   0.180760126 

Ba       0.500000000   0.500000000   0.819239874 

Gd       0.500000000   0.500000000   0.500000000 

Cu       0.000000000   0.000000000   0.656717737 

Cu       0.000000000   0.000000000   0.343282263 

Cu       0.000000000   0.000000000   0.000000000 

O        0.000000000   0.000000000   0.834403347 

O        0.000000000   0.000000000   0.165596653 

O        0.000000000   0.500000000   0.619777593 

O        0.000000000   0.500000000   0.380222407 

O        0.500000000   0.000000000   0.621973247 

O        0.500000000   0.000000000   0.378026753 

O        0.000000000   0.500000000   0.000000000 

(27) K_POINTS automatic 

6 6 2 1 1 1 

Line 27 represents the k-point selection. The word ‘automatic’ directs the plane wave self-

consistent field to generate automatically generate the k-point grid. The k-points are 

represented in the form of nkx nky nkz offx offy offz where nk, is the actual number of 

intervals in a given direction and off, is the offset of the grid. 



 227   

   

1.3 Scf Calculation 

The scf calculation is carried out under less grid of the k-points. The input file that was used 

for this calculation is: 

&control 

    pseudo_dir  = './ ‘, 

    calculation = 'scf', 

    prefix = 'Gab', 

    restart_mode='from_scratch', 

    tstress =.true., 

    tprnfor =.true., 

    outdir ='./tmp/' 

 / 

 &system 

     ibrav=  8, 

     celldm(1)=    6.534937498, 

     celldm(2)=    0.929272686, 

     celldm(3)=    2.601014353, 

    nat =  13, 

    ntyp = 4, 

    ecutwfc = 60.0, 

    ecutrho = 480.0, 

 &electrons 

    mixing_beta = 0.2 

    conv_thr =1.0d-8 

  / 

 

ATOMIC_SPECIES 

  Gd  157.25  Gd.pbe-spdn-rrkjus_psl.1.0.0.UPF 

  Ba  137.327 Ba.pbe-nsp-van.UPF 

  Cu  63.546 Cu.pbe-d-rrkjus.UPF 

  O   15.9994 O.pbe-van_bm.UPF 

 

ATOMIC_POSITIONS (crystal) 

Ba       0.500000000   0.500000000   0.180760126 

Ba       0.500000000   0.500000000   0.819239874 

Gd       0.500000000   0.500000000   0.500000000 

Cu       0.000000000   0.000000000   0.656717737 

Cu       0.000000000   0.000000000   0.343282263 

Cu       0.000000000   0.000000000   0.000000000 
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O        0.000000000   0.000000000   0.834403347 

O        0.000000000   0.000000000   0.165596653 

O        0.000000000   0.500000000   0.619777593 

O        0.000000000   0.500000000   0.380222407 

O        0.500000000   0.000000000   0.621973247 

O        0.500000000   0.000000000   0.378026753 

O        0.000000000   0.500000000   0.000000000 

 

K_POINTS automatic 

 6 6 2  1 1 1 

 

1.4. Nscf Calculation 

The input file for  nscf calculation is the same as that of scf with three changes: calculation = 

‘nscf’, restart mode = ‘restart’ and the increased number of the k-points. For this work all the 

nscf calculations used the grid of 9 9 9 1 1 1. 

1.5. Calculation of Bands 

This is performed using the calculation = ‘bands’. The k-point for this calculation are picked 

in a reciprocal space and this are picked from all the available k-pints. The structure for this 

work was: 

&control 

    pseudo_dir  = '/mnt/lustre/users/jagora/GdBaCuO_dos', 

    calculation = 'nscf', 

    prefix = 'Gab', 

restart_mode='from_scratch', 

  tstress =.true., 

    tprnfor =.true., 

    outdir ='./tmp/' 

 / 

 &system 
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     ibrav=  8, 

     celldm(1)=    6.415189605, 

     celldm(2)=    0.911586423, 

     celldm(3)=    2.6636334554, 

    nat =  13, 

    ntyp = 4, 

    ecutwfc = 60.0, 

    ecutrho = 480.0, 

    nbnd=50, 

   / 

  &electrons 

    mixing_beta = 0.2 

    conv_thr =1.0d-8 

   / 

 ATOMIC_SPECIES 

  Gd  157.25  Gd.pbe-spdn-rrkjus_psl.1.0.0.UPF 

  Ba  137.327 Ba.pbe-nsp-van.UPF 

  Cu  63.546 Cu.pbe-d-rrkjus.UPF 

  O   15.9994 O.pbe-van_bm.UPF 

 

  ATOMIC_POSITIONS (crystal) 

  Ba       0.500000000   0.500000000   0.180760126 

  Ba       0.500000000   0.500000000   0.819239874 

  Gd       0.500000000   0.500000000   0.500000000 

  Cu       0.000000000   0.000000000   0.656717737 

  Cu       0.000000000   0.000000000   0.343282263 

  Cu       0.000000000   0.000000000   0.000000000 

  O        0.000000000   0.000000000   0.834403347 

  O        0.000000000   0.000000000   0.165596653 

  O        0.000000000   0.500000000   0.619777593 

  O        0.000000000   0.500000000   0.380222407 
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   APPENDIX III 

2.1  Bulk Modulus Calculation 

The calculation offers means to calculate the equations of state and for this work we applied 

the murnaghan equation of state. In the calculation the energy of the system is calculate in 

different volumes of the unit cell. This is achieved by running several SCF calculations at 

different values of lattice parameters which represent different volumes and the corresponding 

energies noted. A typical file of the calculation is shown below; 

# equation of state: murnaghan.        chisq = 0.1081D-08 

# V0 = 1203.15 a.u.^3,  k0 = 1153 kbar,  dk0 =  5.03  d2k0 =  0.000  emin =-

1278.37671 

# V0 =  178.29  Ang^3,  k0 = 115.3 GPa 

 

#####################################################################

##### 

# Vol.           E_calc               E_fit     E_diff       Pressure        Enthalpy 

# a.u.^3              Ry                Ry            Ry            GPa              Ry 

#####################################################################

##### 

 1088.40   -1278.32399   -1278.32396    -0.00003      15.03    -1277.21180 

 1111.68   -1278.34462   -1278.34466     0.00004      11.20    -1277.49831 

 1135.30   -1278.35980   -1278.35983     0.00003       7.78    -1277.75972 

 1159.24   -1278.36997   -1278.36994    -0.00003       4.72    -1277.99837 

 1183.52   -1278.37546   -1278.37542    -0.00004       1.98    -1278.21628 

 1208.14   -1278.37665   -1278.37663    -0.00002      -0.47    -1278.41540 

 1233.09   -1278.37389   -1278.37393     0.00004      -2.67    -1278.59745 

 1258.39   -1278.36759   -1278.36762     0.00004      -4.63    -1278.76407 

 1284.03   -1278.35800   -1278.35797    -0.00003      -6.40    -1278.91669 

 

The table shows the equilibrium volume, Bulk modulus and its derivatives at minimum 

energy. The data is used to plot the plot for the equation of state. 
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   APPENDIX IV 

2.1 Total energy, Volume and Pressure 

The total energy as a function of reduced volume is related to pressure by the  Murnaghan’s 

equation of state. The calculated values of the volume and energy are used to plot energy 

verses volume curves which are important is assessing the pressure at which phase transition 

occurs. The file data obtained for the calculation ran at zero pressure is shown below; 

# omega (a.u.)**3       energy (Ry)      pressure (kbar) 

1066.6332473806    -1278.2987753981      190.9137380068 

1071.4947005080    -1278.3049269276      181.4138436912 

1076.3561536353    -1278.3107687657      172.1701702246 

1081.2176067627    -1278.3163092464      163.1746962895 

1086.0790598900    -1278.3215564435      154.4196861519 

1090.9405130174    -1278.3265181798      145.8976782780 

1095.8019661447    -1278.3312020356      137.6014744513 

1100.6634192721    -1278.3356153579      129.5241293687 

1105.5248723994    -1278.3397652679      121.6589406908 

1110.3863255268    -1278.3436586694      113.9994395246 

1115.2477786541    -1278.3473022560      106.5393813191 

1120.1092317815    -1278.3507025187       99.2727371535 

1124.9706849088    -1278.3538657525       92.1936853994 

1129.8321380362    -1278.3567980634       85.2966037397 

1134.6935911635    -1278.3595053748       78.5760615273 

1139.5550442909    -1278.3619934338       72.0268124682 

1144.4164974182    -1278.3642678169       65.6437876128 

1149.2779505456    -1278.3663339360       59.4220886427 

1154.1394036729    -1278.3681970439       53.3569814382 

1159.0008568003    -1278.3698622394       47.4438899142 

1163.8623099276    -1278.3713344728       41.6783901117 

1168.7237630550    -1278.3726185506       36.0562045345 

1173.5852161823    -1278.3737191402       30.5731967179 

1178.4466693097    -1278.3746407746       25.2253660214 

1183.3081224370    -1278.3753878568       20.0088426334 

1188.1695755644    -1278.3759646639       14.9198827795 

1193.0310286917    -1278.3763753515        9.9548641245 

1197.8924818191    -1278.3766239572        5.1102813605 

1202.7539349464    -1278.3767144048        0.3827419718 
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1207.6153880738    -1278.3766505076       -4.2310378298 

1212.4768412011    -1278.3764359725       -8.7342370090 

1217.3382943285    -1278.3760744026      -13.1299334543 

1222.1997474558    -1278.3755693011      -17.4211075783 

1227.0612005832    -1278.3749240743      -21.6106457758 

1231.9226537105    -1278.3741420346      -25.7013437456 

1236.7841068379    -1278.3732264033      -29.6959096835 

1241.6455599652    -1278.3721803139      -33.5969673498 

1246.5070130926    -1278.3710068143      -37.4070590186 

1251.3684662199    -1278.3697088698      -41.1286483127 

1256.2299193473    -1278.3682893656      -44.7641229298 

1261.0913724746    -1278.3667511089      -48.3157972635 

1265.9528256020    -1278.3650968321      -51.7859149248 

1270.8142787293    -1278.3633291941      -55.1766511669 

1275.6757318567    -1278.3614507834      -58.4901152194 

1280.5371849840    -1278.3594641195      -61.7283525324 

1285.3986381114    -1278.3573716557      -64.8933469381 

1290.2600912387    -1278.3551757804      -67.9870227300 

1295.1215443661    -1278.3528788195      -71.0112466647 

1299.9829974935    -1278.3504830382      -73.9678298902 

1304.8444506208    -1278.3479906427      -76.8585298010 

1309.7059037482    -1278.3454037819      -79.6850987200 
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APPENDIX V 

4.1 Super Cell (Crystal) 

A solid crystal is usually defined by a unit cell. A super cell has infinite number of unit cells 

but still can describe the same crystal. Super cells are usually used to determine the properties 

that cannot be described by a unit cell such has varying the concentration of atoms in a 

structure. To create a super cell using the quantum espresso package, software called phonopy 

is used. The phonopy software uses the Pwscf file. The output will show the number of atoms 

and the 'CELL_PARAMETERS' and atom positions for super cell. A typical example for the 

output file for the super cell generated in this work is shown below; 

!    ibrav = 0, nat = 104, ntyp = 4 

CELL_PARAMETERS bohr 

 14.4677433052524282    0.0000000000000000    0.0000000000000000 

  0.0000000000000000   14.7889967485508755    0.0000000000000000 

    0.0000000000000000    0.0000000000000000   82.5583554754268789 

ATOMIC_SPECIES 

 Ba 137.32700   Ba.pbe-nsp-van.UPF 

 Gd 157.25000   Gd.pbe-spdn-rrkjus_psl.1.0.0.UPF 

 Cu   63.54600   Cu.pbe-d-rrkjus.UPF 

  O   15.99940   O.pbe-van_bm.UPF 

                                           ATOMIC_POSITIONS crystal 

        Site n.    Atom                   

         1           Ba tau (1) = (   0.2502350   0.2571128   0.2759381  ) 

         2           Ba tau (2) = (   0.7500000   0.2568713   0.2752225  ) 

         3           Ba tau (3) = (   0.2500000   0.7706139   0.2752225  ) 

         4           Ba tau (4) = (   0.7500000   0.7706139   0.2752225  ) 

         5           Ba tau (5) = (   0.2500000   0.2568713   1.7978069  ) 

         6           Ba tau (6) = (   0.7500000   0.2568713   1.7978069  ) 

         7           Ba tau (7) = (   0.2500000   0.7706139   1.7978069  ) 

         8           Ba tau (8) = (   0.7500000   0.7706139   1.7978069  ) 

         9           Ba tau (9) = (   0.2500000   0.2568713   1.2473618  ) 

        10          Ba tau (10) = (   0.7500000   0.2568713   1.2473618  ) 

        11          Ba tau (11) = (   0.2500000   0.7706139   1.2473618  ) 

        12          Ba tau (12) = (   0.7500000   0.7706139   1.2473618  ) 
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        13          Ba tau (13) = (   0.2500000   0.2568713   2.7699462  ) 

        14          Ba tau (14) = (   0.7500000   0.2568713   2.7699462  ) 

        15          Ba tau (15) = (   0.2500000   0.7706139   2.7699462  ) 

        16          Ba tau (16) = (   0.7500000   0.7706139   2.7699462  ) 

        17          Gd tau (17) = (   0.2500000   0.2568713   0.7612922  ) 

        18          Gd tau (18) = (   0.7500000   0.2568713   0.7612922  ) 

        19          Gd tau (19) = (   0.2500000   0.7706139   0.7612922  ) 

        20          Gd tau (20) = (   0.7500000   0.7706139   0.7612922  ) 

        21           Gd tau (21) = (   0.2500000   0.2568713   2.2838766  ) 

        22           Gd tau (22) = (   0.7500000   0.2568713   2.2838766  ) 

        23           Gd tau (23) = (   0.2500000   0.7706139   2.2838766  ) 

        24           Gd tau (24) = (   0.7500000   0.7706139   2.2838766  ) 

        25           Cu tau (25) = (   0.0000000   0.0000000   0.9999082  ) 

        26           Cu tau (26) = (   0.5000000   0.0000000   0.9999082  ) 

        27           Cu tau (27) = (   0.0000000   0.5137426   0.9999082  ) 

        28           Cu tau (28) = (   0.5000000   0.5137426   0.9999082  ) 

        29           Cu tau (29) = (   0.0000000   0.0000000   2.5224925  ) 

        30           Cu tau (30) = (   0.5000000   0.0000000   2.5224925  ) 

        31           Cu tau (31) = (   0.0000000   0.5137426   2.5224925  ) 

        32           Cu tau (32) = (   0.5000000   0.5137426   2.5224925  ) 

        33           Cu tau (33) = (   0.0000000   0.0000000   0.5226762  ) 

        34           Cu tau (34) = (   0.5000000   0.0000000   0.5226762  ) 

        35           Cu tau (35) = (   0.0000000   0.5137426   0.5226762  ) 

        36           Cu tau (36) = (   0.5000000   0.5137426   0.5226762  ) 

        37           Cu tau (37) = (   0.0000000   0.0000000   2.0452606  ) 

        38           Cu tau (38) = (   0.5000000   0.0000000   2.0452606  ) 

        39           Cu tau (39) = (   0.0000000   0.5137426   2.0452606  ) 

        40           Cu tau (40) = (   0.5000000   0.5137426   2.0452606  ) 

        41           Cu tau (41) = (   0.0000000   0.0000000   0.0000000  ) 

        42           Cu tau (42) = (   0.5000000   0.0000000   0.0000000  ) 

        43           Cu tau (43) = (   0.0000000   0.5137426   0.0000000  ) 

        44           Cu tau (44) = (   0.5000000   0.5137426   0.0000000  ) 

        45           Cu tau (45) = (   0.0000000   0.0000000   1.5225844  ) 

        46           Cu tau (46) = (   0.5000000   0.0000000   1.5225844  ) 

        47           Cu tau (47) = (   0.0000000   0.5137426   1.5225844  ) 

        48           Cu tau (48) = (   0.5000000   0.5137426   1.5225844  ) 

        49           O   tau (49) = (   0.0000000   0.0000000   1.2704495  ) 

        50           O   tau (50) = (   0.5000000   0.0000000   1.2704495  ) 

        51           O   tau (51) = (   0.0000000   0.5137426   1.2704495  ) 

        52           O   tau (52) = (   0.5000000   0.5137426   1.2704495  ) 

        53           O   tau (53) = (   0.0000000   0.0000000   2.7930339  ) 

        54           O   tau (54) = (   0.5000000   0.0000000   2.7930339  ) 

        55           O   tau (55) = (   0.0000000   0.5137426   2.7930339  ) 

        56           O   tau (56) = (   0.5000000   0.5137426   2.7930339  ) 
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        57           O   tau (57) = (   0.0000000   0.0000000   0.2521349  ) 

        58           O   tau (58) = (   0.5000000   0.0000000   0.2521349  ) 

        59           O   tau (59) = (   0.0000000   0.5137426   0.2521349  ) 

        60           O   tau (60) = (   0.5000000   0.5137426   0.2521349  ) 

        61           O   tau (61) = (   0.0000000   0.0000000   1.7747192  ) 

        62           O   tau (62) = (   0.5000000   0.0000000   1.7747192  ) 

        63           O   tau (63) = (   0.0000000   0.5137426   1.7747192  ) 

        64           O   tau (64) = (   0.5000000   0.5137426   1.7747192  ) 

        65           O   tau (65) = (   0.0000000   0.2568713   0.9436637  ) 

        66           O   tau (66) = (   0.5000000   0.2568713   0.9436637  ) 

        67           O   tau (67) = (   0.0000000   0.7706139   0.9436637  ) 

        68           O   tau (68) = (   0.5000000   0.7706139   0.9436637  ) 

        69           O   tau (69) = (   0.0000000   0.2568713   2.4662480  ) 

        70           O   tau (70) = (   0.5000000   0.2568713   2.4662480  ) 

        71           O   tau (71) = (   0.0000000   0.7706139   2.4662480  ) 

        72           O   tau (72) = (   0.5000000   0.7706139   2.4662480  ) 

        73           O   tau (73) = (   0.0000000   0.2568713   0.5789207  ) 

        74           O   tau (74) = (   0.5000000   0.2568713   0.5789207  ) 

        75           O   tau (75) = (   0.0000000   0.7706139   0.5789207  ) 

        76           O   tau (76) = (   0.5000000   0.7706139   0.5789207  ) 

        77           O   tau (77) = (   0.0000000   0.2568713   2.1015051  ) 

        78           O   tau (78) = (   0.5000000   0.2568713   2.1015051  ) 

        79           O   tau (79) = (   0.0000000   0.7706139   2.1015051  ) 

        80           O   tau (80) = (   0.5000000   0.7706139   2.1015051  ) 

        81           O   tau (81) = (   0.2500000   0.0000000   0.9470067  ) 

        82           O   tau (82) = (   0.7500000   0.0000000   0.9470067  ) 

        83           O   tau (83) = (   0.2500000   0.5137426   0.9470067  ) 

        84           O   tau (84) = (   0.7500000   0.5137426   0.9470067  ) 

        85           O   tau (85) = (   0.2500000   0.0000000   2.4695911  ) 

        86           O   tau (86) = (   0.7500000   0.0000000   2.4695911  ) 

        87           O   tau (87) = (   0.2500000   0.5137426   2.4695911  ) 

        88           O   tau (88) = (   0.7500000   0.5137426   2.4695911  ) 

        89           O   tau (89) = (   0.2500000   0.0000000   0.5755776  ) 

        90           O   tau (90) = (   0.7500000   0.0000000   0.5755776  ) 

        91           O   tau (91) = (   0.2500000   0.5137426   0.5755776  ) 

   92           O   tau (92) = (   0.7500000   0.5137426   0.5755776  ) 

        93           O   tau (93) = (   0.2500000   0.0000000   2.0981620  ) 

        94           O   tau (94) = (   0.7500000   0.0000000   2.0981620  ) 

        95           O   tau (95) = (   0.2500000   0.5137426   2.0981620  ) 

        96           O   tau (96) = (   0.7500000   0.5137426   2.0981620  ) 

        97           O   tau (97) = (   0.0000000   0.2568713   0.0000000  ) 

        98           O   tau (98) = (   0.5000000   0.2568713   0.0000000  ) 

        99           O   tau (99) = (   0.0000000   0.7706139   0.0000000  ) 

       100           O   tau (80) = (   0.5000000   0.7706139   2.1015051  ) 
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       101           O   tau (81) = (   0.2500000   0.0000000   0.9470067  ) 

       102           O   tau (82) = (   0.7500000   0.0000000   0.9470067  ) 

       103           O   tau (83) = (   0.2500000   0.5137426   0.9470067  ) 

       104           O   tau (84) = (   0.7500000   0.5137426   0.9470067  ) 
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APENDIX VI 

5.1  Publications 

(1) Elastic behavior, pressure-induced doping and superconducting transition temperature of 

GdBa2Cu3O7−x  Jared O Agora, Calford Otieno, Philip W O Nyawere and George S 

Manyali Published 13 January 2022. 

(2) Ab initio study of pressure induced phase transition, structural and electronic structure 

properties of superconducting perovskite compound GdBa2Cu3O7-x 

Jared O.Agora, CalfordOtieno, Philip W.O.Nyawere, George S.Manyali 
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 APENDIX VII 

6.1 Conferences 

1. International conference on Computing and information systems techniques held on 

8th-9th October 2018 at Kabarak University. 

2. 2nd computational and theoretical physics annual workshop (CTheP) held on 12th -13th 

June 2019 at Kakamega Guest House, Kakamega Kenya. 


