KISII UNIVERSITY

UNIVERSITY EXAMINATIONS

MAIN/ELIMU CENTRE CAMPUSES

SECOND YEAR EXAMINATION FOR THE AWARD OF THE DEGREE OF BACHELOR OF EDUCATION [SCIENCE AND ARTS], BACHELOR OF SCIENCE [ACTUARIAL SCIENCE, ECONOMICS AND STATISTICS, ANALYTICAL CHEMISTRY, APPLIED STATISTICS AND COMPUTER SCIENCE (INTEGRATED)]

SECOND SEMESTER 2022/2023 [JAN -APRIL 2023]

MATH 241-PROBABILITY AND STATISTICS II

STREAMS: Y2 S2 KUCCPS/SSP

2*HOURS*

INSTRUCTIONS

- **1. Do not write anything on this paper**
- **2. Answer Question ONE and any other TWO questions.**
- **3. Show ALL your workings and steps.**

QUESTION ONE [COMPULORY (30marks)]

(a) If $P(E) = 0.9$ and $P(F) = 0.8$, show that $P(EF) \ge 0.7$. Hence show that in $\text{general } P(EF) \geq P(E) + P(F) - 1.$ [5 **marks]**

(b) Suppose $Y_1, Y_2, ..., Y_n$ is an i.i.d sample from

$$
f(y) = \begin{cases} p^{y} (1-p)^{1-y}, & y = 0,1 \\ 0, & \text{elsewhere} \end{cases}.
$$

That is Y_1, Y_2, \ldots, Y_n are Bernoulli (p) random variables. Find the distribution of $U = Y_1 + Y_2 ... + Y_n$ by the method of moment generating functions. [**6 marks]**

(c)) Suppose $X \sim U \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ J $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ \setminus $\Big($ 2 , 2 $X \sim U \Big[-\frac{\pi}{2}, \frac{\pi}{2}\Big]$. Show that the distribution of the random variable $Y = \tan X$ is given by $(1 + y^2)$ 1 $\pi(1 + y^2)$ which is a standard Cauchy

distribution . **[6 marks]**

(d) The probability function of a random variable *X* is given by

$$
f(x) = \begin{cases} 2xe^{-x^2}, & x > 0 \\ 0, & otherwise \end{cases}
$$
. Find the probability density for the random variable

$$
Y = X^2.
$$
 [4 marks]

(e) The joint probability function of two random variables *X* and *Y* is given by

$$
f(x, y) = \begin{cases} \frac{1}{42} (2x + y), x = 0,1,2; y = 0,1,2,3\\ 0, otherwise \end{cases}
$$

Find the joint probability density function of $U = X - Y$ and $V = X + Y$

[6 marks]

(f) Suppose that *X* is a random variable whose probability distribution is given by

$$
f(x) = \begin{cases} \frac{1}{4}, x = 1,2,3,4, \\ 0, otherwise \end{cases}
$$

Find the probability distribution of $Y = 2X + 1$.

 [3marks]

QUESTION TWO (20marks)

(a)Let *Y* denote the sum of the items of a random sample of size 100 from a Bernoulli distribution with parameter 2 $p = \frac{1}{2}$. Find the approximate value of $P(Y = 48, 49, 50, 51, 52)$. **[5marks]**

(b) Let S^2 be the sample variance of a random sample of size 6 from the normal distribution $N(\mu,12)$. Find $P(2.30 < S^2 < 22.2)$. **[5marks]**

(c) Let $Y_1 < Y_2 < Y_3 < Y_4$ denote the order statistics of a random sample of size n= 4 from a distribution having p.d.f $\overline{\mathcal{L}}$ ⇃ $\left[2x, 0 < x < \right]$ $=$ *elsewhere* $x, 0 < x$ *f x* 0, $2x, 0 < x < 1$ $(x) = \begin{cases} 2x, & x \neq 1 \\ 0, & x = 1 \end{cases}$

Find:

QUESTION THREE (20marks)

(a) The Gamma function of α is defined as $\Gamma(\alpha) = \int_0^{\infty} t^{\alpha-1} e^{-t} dt$ $(\alpha) = \int_0^{\infty} t^{\alpha-1} e^{-t} dt$. Using the transformation $Y = \beta X$, derive the gamma distribution with parameters α and β . Hence find *E*(*X*) **[12 marks]** (b) The Beta function is defined by $B(a,b) = \int_0^1 t^{a-1} (1-t)^{b-1} dt$ 0 $(a,b) = \int_0^1 t^{a-1} (1-t)^{b-1} dt$. Use the transformation *Y* $T = \frac{1}{T}$ to show that the beta distribution of the second kind is $B(a,b) = \int_{a}^{b} \frac{y}{(a+b)^2} dy$ *y* $B(a,b) = \int_0^\infty \frac{y^{a-1}}{(1+y)^{a+b}}$ $\int_0^\infty \frac{y^a}{(1+y^a+1)}$ $^{+}$ \overline{a} $\ddot{}$ $=\int_0$ 1 $(1 + y)$ $(a,b) = \int_{a}^{b} \frac{y}{(a+b)^2} dy$. Hence determine its mean and variance **[8marks]**

QUESTION FOUR (20 marks)

(a) Let X_1 and X_2 have the joint p.d.f:

$$
f(x_1, x_2) = \begin{cases} \frac{x_1 x_2}{36}, x_1 = 1, 2, 3; x_2 = 1, 2, 3 \\ 0, otherwise \end{cases}
$$
. Find the marginal p.d.f of Y_1 given

that $Y_1 = X_1 X_2$ and $Y_2 = X_2$

. **[10 marks]**

(b) A random variable *X* has probability distribution given by

$$
f(x) = \frac{x^{\alpha-1}e^{-\frac{x}{\beta}}}{\beta^{\alpha}\Gamma\alpha}, x > 0
$$
 and zero elsewhere.

Use the method of moment generating function to derive the distribution of $_{\beta}$ $Y = h(X) = \frac{2X}{3}$ **[10marks]**

QUESTION FIVE (20 marks)

(a) A random variable *X* has probability distribution given by

$$
f(x) = \begin{cases} \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}, & -\infty < x < \infty\\ 0, & \text{elsewhere} \end{cases}
$$

 Find the moment generating function of *X* . Hence show that the mean and variance of $\begin{array}{ccc} X & \hbox{are respectively} & \mu \end{array}$ and $\begin{array}{ccc} \sigma^2 & & \hbox{\bf [13marks]} \end{array}$

(b) Suppose *X* has a binomial distribution given by

$$
P(X = x) = {n \choose x} p^x q^{n-x}, x = 0,1,2,...,n
$$

Show that the characteristic function of *X* is given by $\phi(t) = (q + pe^{it})^n$. **[7marks]**