

UNIVERSITY EXAMINATIONS

SECOND YEAR EXAMINATION FOR THE AWARD OF THE DEGREE OF BACHELOR OF SCIENCE IN MATHEMATICS AND APPLIED STATISTICS SECOND SEMESTER 2022/2023 [JANUARY-APRIL, 2023]

MATH 210: LINEAR ALGEBRA I

STREAM: Y2S2

TIME: 2 HOURS

DAY: WEDNESDAY, 3:00 - 5:00 PM

DATE: 29/03/2023

INSTRUCTIONS

1. Do not write anything on this question paper.

2. Answer question ONE and any other TWO questions.

QUESTION ONE (COMPULSORY) (30 MARKS)

a) Calculate the determinant of the following matrices:

i) $A = \begin{pmatrix} \frac{1}{2} & \frac{2}{3} \\ \frac{1}{3} & -\frac{3}{5} \end{pmatrix}$	ii) $A = \begin{bmatrix} 1 & 5 & -2 \\ 3 & -1 & 4 \\ -3 & 6 & -7 \end{bmatrix}$	(7marks)
--	---	----------

- b) Find the eigen values of the matrix $A = \begin{pmatrix} 5 & 2 \\ 9 & 2 \end{pmatrix}$
- c) Use Cramer's rule to solve: i)12u + 8a = 52 -16u + 6a = -36 (3marks) ii)a + 2b - 3c = 32a - b - c = 11
- d) Find the vector equation of a line which passes through the points A(4, 3, 1) and B(2, 1, 1).

(5marks)

(6marks)

e) Find the distance between the vectors $\boldsymbol{u} = (1,2,3)$ and $\boldsymbol{v} = (1,4,-1)$ (5marks)

QUESTION TWO (20MARKS)

3a + 2b + c = -5

a) Use Gauss-Jordan method to solve:

$$x + y + z = 4$$

2x - 3y + 4z = 33
3x - 2y - 2z = 2 (6marks)

b) Reduce the matrix to canonical form:

$$A = \begin{bmatrix} 4 & 2 & -2 \\ -5 & 3 & 2 \\ -2 & 4 & 1 \end{bmatrix}$$
Find the area of the triangle having the vertices at the points $A(1, 0)$, $B(2, 2)$ and $C(4, 3)$
(7marks)

(7marks)

QUESTION THREE (20MARKS)

a) Use the augmented matrix to find the inverse of the matrix

$$A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$
Solve the equation $\begin{vmatrix} 4 & -x \\ r & 2x \end{vmatrix} = 4$
(3marks)

b) Solve the equation $\begin{vmatrix} x \\ 5 \\ 2x \end{vmatrix} =$

c) Find the adjoint of the matrix

$$A = \begin{bmatrix} 1 & 2 & -2 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix}$$
(7marks)
$$\begin{bmatrix} 1 & -1 & 3 \end{bmatrix}$$

d) Determine the rank of the matrix
$$A = \begin{bmatrix} 2 & 0 & 4 \\ -1 & -3 & 1 \end{bmatrix}$$

(3marks)

QUESTION FOUR (20MARKS)

a) Find the co-factors of the matrix A, if:

$$A = \begin{bmatrix} -2 & 5 & 4 \\ 5 & 7 & 5 \\ 4 & 5 & -2 \end{bmatrix}$$
(8marks)
$$Im + 1 \quad 0 \qquad 0 \quad I$$

b) Find the value of m for
$$\begin{vmatrix} m & 1 & 0 & 0 \\ 4 & m & 3 \\ 2 & 8 & m+5 \end{vmatrix} = 0$$
 (7marks)

c) Show that the vectors
$$\boldsymbol{u} = 3i - 4j$$
 and $\boldsymbol{v} = 4i - 3j$ are orthogonal. (5marks)

QUESTION FIVE (20MARKS)

a) Define a linear transformation and hence show that T: $R^3 \rightarrow R^2$ defined by:

$$T\begin{bmatrix} X_1\\X_2\\X_3\end{bmatrix} = \begin{bmatrix} X_1 + X_2\\X_2 - X_3\end{bmatrix}$$
 is a linear transformation. (8marks)

- b) i) Define the term a symmetric matrix.. (2marks) ii) Prove that a symmetric matrix of order 2 is diagonalizable. (5marks)
- c) Find the point of intersection of the lines whose parametric equations are:

$$l_1: x = 3 - 2t, \qquad y = 4 + t$$

 $l_1: x = 1 + 4t, y = 5 + 2t$

(5marks)