MATH 854

UNIVERSITY EXAMINATIONS FIRST YEAR EXAMINATION FOR THE AWARD OF THE DEGREE OF MASTER OF SCIENCE IN APPLIED MATHEMATICS SECOND SEMESTER 2022/2023 [MAY, 2023]

MATH 854: FLUID MECHANICS III

STREAM: Y1 S2

TIME: 3 HOURS

DAY: WEDNESDAY, 2:00 - 5:00 P.M. DATE: 03/05/2023 **INSTRUCTIONS**

1. Do not write anything on this guestion paper.

2. Answer Question ONE Compulsory and any other TWO (2) Questions.

OUESTION ONE (30 MARKS)

- a) Describe briefly the term dimensional homogeinity. (2marks)
- b) Find an expression for the drag force on smooth sphere of diameter D, moving with uniform velocity V in a fluid density ρ and dynamic viscosity (7marks) μ.
- c) State the Buckingham's π -theorem. (3marks)
- d) The resistance R experienced by a partially submerged body depends upon the velocity V, length l, viscosity of the fluid μ , density of the fluid ρ and gravitational acceleration g. Obtain a dimensionless expression for *R*. (7marks)
- e) Briefly explain the following concepts in terms of Mach number:
 - Subsonic flow i)
 - Sonic flow ii)
 - Supersonic flow iii)

(3marks)

f) Air at a pressure of 240 kN/m^2 and temperature 30^oC is moving at a velocity of 200 m/s. Calculate the stagnation pressure if:

- i) Compressibility is neglected.
- ii) Compressibility is accounted for.

Take $R = 287287 J/kgK, \gamma = 1.4$

QUESTION TWO (15 MARKS)

- a) Derive the differential equation of a perfect gas given by the equation $\frac{dp}{p} \frac{d\rho}{\rho} \frac{dT}{T} = 0$ (3marks)
- b) Briefly explain the THREE basic thermodynamic processes involved in compressible fluid flow. (6marks)
- c) A gas is flowing through a horizontal pipe. On a section where crosssection area is $100cm^2$, the pressure and temperature are found to be 4 bar (gauge) and $40^{\circ}C$ respectively. At another section where the area of the cross-section is $50cm^2$ the pressure is recorded 3 bar (gauge). If the mass rate of flow of gas through the pipe is 0.6kg/s, find the velocities of the gas at these sections, assuming an isothermal change. Take R = 287J/kgK and atmospheric pressure= 1 bar.

(6marks)

QUESTION THREE (15 MARKS)

- a) A gas with a velocity of 400 m/s is flowing through a horizontal pipe at a section where pressure is $80kN/m^2$ absolute and temperature $50^{\circ}C$. The pipe changes in diameter and at this section, the pressure is $120kN/m^2$ absolute. Find the velocity of the gas at this section if the flow of the gas is adiabatic. Take R = 287J/kgK and $\gamma = 1.4$. (10marks)
- b) An aeroplane is flying at a height of 15 km where temperature is $-40^{\circ}C$. The speed of the plane is corresponding to M = 2. Find the speed of the plane if R = 287J/kgK and $\gamma = 1.4$

(5marks)

QUESTION FOUR (15 MARKS)

- a) A supersonic aircraft flies at an altitude of 3.6 km where temperature is $4^{0}C$. Determine the speed of the aircraft if its sound is heard 4 seconds after its passage over the head of an observer. Take $R = \frac{287J}{kgK}$ and $\gamma = 1.4$ (7marks)
- b) An aeroplane is flying at 900 km/hr through still air having a pressure of 78.5 kN/m^2 (absolute) and temperature $-10^{\circ}C$. Calculate on the stagnation point on the nose of the plane:
 - i) Stagnation pressure
 - ii) Stagnation temperature
 - iii) Stagnation density

Take R = 287J/kgK and $\gamma = 1.4$

(8marks)

(8marks)